Differences between Trypanosoma brucei gambiense Groups 1 and 2 in Their Resistance to Killing by Trypanolytic Factor 1

Background The three sub-species of Trypanosoma brucei are important pathogens of sub-Saharan Africa. T. b. brucei is unable to infect humans due to sensitivity to trypanosome lytic factors (TLF) 1 and 2 found in human serum. T. b. rhodesiense and T. b. gambiense are able to resist lysis by TLF. There are two distinct sub-groups of T. b. gambiense that differ genetically and by human serum resistance phenotypes. Group 1 T. b. gambiense have an invariant phenotype whereas group 2 show variable resistance. Previous data indicated that group 1 T. b. gambiense are resistant to TLF-1 due in-part to reduced uptake of TLF-1 mediated by reduced expression of the TLF-1 receptor (the haptoglobin-hemoglobin receptor (HpHbR)) gene. Here we investigate if this is also true in group 2 parasites. Methodology Isogenic resistant and sensitive group 2 T. b. gambiense were derived and compared to other T. brucei parasites. Both resistant and sensitive lines express the HpHbR gene at similar levels and internalized fluorescently labeled TLF-1 similar fashion to T. b. brucei. Both resistant and sensitive group 2, as well as group 1 T. b. gambiense, internalize recombinant APOL1, but only sensitive group 2 parasites are lysed. Conclusions Our data indicate that, despite group 1 T. b. gambiense avoiding TLF-1, it is resistant to the main lytic component, APOL1. Similarly group 2 T. b. gambiense is innately resistant to APOL1, which could be based on the same mechanism. However, group 2 T. b. gambiense variably displays this phenotype and expression does not appear to correlate with a change in expression site or expression of HpHbR. Thus there are differences in the mechanism of human serum resistance between T. b. gambiense groups 1 and 2.

[1]  J. Beadell,et al.  Phylogeography and Taxonomy of Trypanosoma brucei , 2011, PLoS neglected tropical diseases.

[2]  J. Raper,et al.  Prophylactic antiparasitic transgenesis for human parasitic disease? , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[3]  S. Hajduk,et al.  Mechanism of Trypanosoma brucei gambiense (group 1) resistance to human trypanosome lytic factor , 2010, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Hajduk,et al.  The Plasma Membrane of Bloodstream-form African Trypanosomes Confers Susceptibility and Specificity to Killing by Hydrophobic Peptides* , 2010, The Journal of Biological Chemistry.

[5]  B. Vanhollebeke,et al.  The trypanolytic factor of human serum: many ways to enter the parasite, a single way to kill , 2010, Molecular microbiology.

[6]  M. Quail,et al.  The Genome Sequence of Trypanosoma brucei gambiense, Causative Agent of Chronic Human African Trypanosomiasis , 2010, PLoS neglected tropical diseases.

[7]  L. Lins,et al.  C-Terminal Mutants of Apolipoprotein L-I Efficiently Kill Both Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense , 2009, PLoS pathogens.

[8]  J. Raper,et al.  Hydrodynamic gene delivery of baboon trypanosome lytic factor eliminates both animal and human-infective African trypanosomes , 2009, Proceedings of the National Academy of Sciences.

[9]  B. Vanhollebeke,et al.  Human innate immunity against African trypanosomes. , 2009, Current opinion in immunology.

[10]  A. MacLeod,et al.  Trypanosoma brucei gambiense Type 1 populations from human patients are clonal and display geographical genetic differentiation. , 2008, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[11]  E. Louis,et al.  Isolation and analysis of the genetic diversity of repertoires of VSG expression site containing telomeres from Trypanosoma brucei gambiense, T. b. brucei and T. equiperdum , 2008, BMC Genomics.

[12]  J. Raper,et al.  Distinct roles of apolipoprotein components within the trypanosome lytic factor complex revealed in a novel transgenic mouse model , 2008, The Journal of experimental medicine.

[13]  S. Moestrup,et al.  A Haptoglobin-Hemoglobin Receptor Conveys Innate Immunity to Trypanosoma brucei in Humans , 2008, Science.

[14]  S. Moestrup,et al.  Hemoglobin Is a Co-Factor of Human Trypanosome Lytic Factor , 2007, PLoS pathogens.

[15]  Yoshihisa Watanabe,et al.  Distinct roles of haptoglobin-related protein and apolipoprotein L-I in trypanolysis by human serum , 2007, Proceedings of the National Academy of Sciences.

[16]  E. Matovu,et al.  Detection of T.b. rhodesiense Trypanosomes in Humans and Domestic Animals in South East Uganda by Amplification of Serum Resistance‐Associated Gene , 2006, Annals of the New York Academy of Sciences.

[17]  M. Cipriano,et al.  In Vitro Generation of Human High-Density-Lipoprotein-Resistant Trypanosoma brucei brucei , 2006, Eukaryotic Cell.

[18]  A. Minihane,et al.  Polymorphisms in the Apolipoprotein L1 gene and their effects on blood lipid and glucose levels in middle age males , 2006, Genes & Nutrition.

[19]  J. Raper,et al.  Trypanosome lytic factor, a subclass of high-density lipoprotein, forms cation-selective pores in membranes. , 2005, Molecular and biochemical parasitology.

[20]  S. Hajduk,et al.  Human High Density Lipoproteins Are Platforms for the Assembly of Multi-component Innate Immune Complexes* , 2005, Journal of Biological Chemistry.

[21]  David M. A. Martin,et al.  The Genome of the African Trypanosome Trypanosoma brucei , 2005, Science.

[22]  T. Elston,et al.  Stochasticity in gene expression: from theories to phenotypes , 2005, Nature Reviews Genetics.

[23]  Marion Becker,et al.  Isolation of the repertoire of VSG expression site containing telomeres of Trypanosoma brucei 427 using transformation-associated recombination in yeast. , 2004, Genome research.

[24]  A. MacLeod,et al.  Human infectivity trait in Trypanosoma brucei: stability, heritability and relationship to sra expression , 2004, Parasitology.

[25]  V. Jamonneau,et al.  Characterization of Trypanosoma brucei s.l. infecting asymptomatic sleeping-sickness patients in Côte d'Ivoire: a new genetic group? , 2004, Annals of tropical medicine and parasitology.

[26]  L. Vanhamme,et al.  Distribution of apolipoprotein L-I and trypanosome lytic activity among primate sera. , 2004, Molecular and biochemical parasitology.

[27]  R. Brasseur,et al.  Apolipoprotein L-I is the trypanosome lytic factor of human serum , 2003, Nature.

[28]  S. Magez,et al.  Novel primer sequences for polymerase chain reaction-based detection of Trypanosoma brucei gambiense. , 2002, The American journal of tropical medicine and hygiene.

[29]  W. Gibson,et al.  The human serum resistance associated gene is ubiquitous and conserved in Trypanosoma brucei rhodesiense throughout East Africa. , 2002, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[30]  E. Fèvre,et al.  Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene , 2001, The Lancet.

[31]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[32]  S. Hajduk,et al.  Haptoglobin-related Protein Mediates Trypanosome Lytic Factor Binding to Trypanosomes* , 2001, The Journal of Biological Chemistry.

[33]  E Pays,et al.  The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. , 2001, Molecular and biochemical parasitology.

[34]  N. Biteau,et al.  Conservation of metacyclic variant surface glycoprotein expression sites among different trypanosome isolates. , 2001, Molecular and biochemical parasitology.

[35]  D. Perez-Morga,et al.  A receptor-like flagellar pocket glycoprotein specific to Trypanosoma brucei gambiense. , 2001, Molecular and biochemical parasitology.

[36]  Stephen Tomlinson,et al.  Characterization of a Novel Trypanosome Lytic Factor from Human Serum , 1999, Infection and Immunity.

[37]  L. Vanhamme,et al.  A VSG Expression Site–Associated Gene Confers Resistance to Human Serum in Trypanosoma rhodesiense , 1998, Cell.

[38]  M. Tibayrenc,et al.  Trypanosoma brucei s.1.: evolution, linkage and the clonality debate , 1996, Parasitology.

[39]  Y. Stierhof,et al.  Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei , 1995, The Journal of cell biology.

[40]  R. Hamers,et al.  The serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense encodes a variant surface glycoprotein-like protein. , 1994, Molecular and biochemical parasitology.

[41]  J. Seed,et al.  Characterization of human serum-resistant and serum-sensitive clones from a single Trypanosoma brucei gambiense parental clone. , 1994, The Journal of parasitology.

[42]  D. Nolan,et al.  A novel heterodimeric transferrin receptor encoded by a pair of VSG expression site-associated genes in T. brucei , 1994, Cell.

[43]  S. Hajduk,et al.  Endocytosis of a cytotoxic human high density lipoprotein results in disruption of acidic intracellular vesicles and subsequent killing of African trypanosomes , 1994, The Journal of cell biology.

[44]  A. Tait,et al.  Epidemiological relationships of Trypanosoma brucei stocks from South East Uganda: evidence for different population structures in human infective and non-human infective isolates , 1994, Parasitology.

[45]  M. Ligtenberg,et al.  ESAG 6 and 7 products of Trypanosoma brucei form a transferrin binding protein complex. , 1994, European journal of cell biology.

[46]  P. Borst,et al.  Reconstitution of a surface transferrin binding complex in insect form Trypanosoma brucei. , 1994, The EMBO journal.

[47]  M. Tibayrenc,et al.  Isozyme variability of Trypanosoma brucei s.l.: genetic, taxonomic, and epidemiological significance. , 1994, Experimental parasitology.

[48]  M. Tibayrenc,et al.  Population genetics of Trypanosoma brucei in Central Africa: taxonomic and epidemiological significance , 1993, Parasitology.

[49]  M. Loomis,et al.  A survey for a trypanocidal factor in primate sera. , 1990, The Journal of protozoology.

[50]  A. Tait,et al.  The identification of Trypanosoma brucei subspecies using repetitive DNA sequences. , 1990, Molecular and biochemical parasitology.

[51]  H Hirumi,et al.  Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. , 1989, The Journal of parasitology.

[52]  H. Imberechts,et al.  A gene expressed only in serum-resistant variants of Trypanosoma brucei rhodesiense. , 1989, Molecular and biochemical parasitology.

[53]  S. Hajduk,et al.  Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. , 1989, The Journal of biological chemistry.

[54]  W. Gibson Will the real Trypanosoma b. gambiense please stand up. , 1986, Parasitology today.

[55]  E. Pays,et al.  The use of DNA hybridization and numerical taxonomy in determining relationships between Trypanosoma brucei stocks and subspecies , 1986, Parasitology.

[56]  A. Tait,et al.  Enzyme variation in Trypanosoma brucei spp. I. Evidence for the sub-speciation of Trypanosoma brucei gambiense , 1984, Parasitology.

[57]  D. Mehlitz,et al.  Identity of Trypanozoon stocks isolated from man and a domestic dog in Liberia. , 1984, Tropenmedizin und Parasitologie.

[58]  D. Godfrey,et al.  Epidemiological studies on the animal reservoir of Gambiense sleeping sickness. Part III. Characterization of trypanozoon stocks by isoenzymes and sensitivity to human serum. , 1982, Tropenmedizin und Parasitologie.

[59]  M. Rifkin Identification of the trypanocidal factor in normal human serum: high density lipoprotein. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[60]  P. Kennedy,et al.  Traversal of human and animal trypanosomes across the blood-brain barrier , 2011, Journal of NeuroVirology.

[61]  Human African trypanosomiasis (sleeping sickness): epidemiological update. , 2006, Releve epidemiologique hebdomadaire.

[62]  J. Donelson,et al.  The Genome of the African Trypanosome , 2002 .

[63]  J. Barry,et al.  Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. , 2001, Advances in parasitology.

[64]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[65]  R. Hamers,et al.  Only the serum-resistant bloodstream forms of Trypanosoma brucei rhodesiense express the serum resistance associated (SRA) protein. , 1992, Annales de la Societe belge de medecine tropicale.

[66]  T. Marshall,et al.  Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. , 1980, Advances in parasitology.

[67]  D. Godfrey,et al.  Enzyme electrophoresis in characterizing the causative organism of Gambian trypanosomiasis. , 1976, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[68]  Edinburgh Research Explorer Genetic analysis of the human infective trypanosome, Trypanosoma brucei gambiense: chromosomal segregation, crossing over and the construction of a genetic map , 2022 .