Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers

An uncooled microbolometer based on metamaterial absorbers is investigated. The absorption peak reaches 90%, and the peak wavelength can be tailored from 2.4 to 10.2 μm with corresponding bandwidth varying from 0.5 to 1.5 μm by tuning the geometric parameters of the absorbers, covering two atmosphere windows (3-5 μm and 8-14 μm). The thermal distribution in the microbolometer can be adjusted to realize a strong thermal response. In the given situation with a pixel size of 25.07 μm, the temperature response of the detector reaches 1.3 K. The microbolometer can be potentially used in thermal imaging at selected wavelengths in the mid-infrared and far-infrared regimes.

[1]  Alexander Soibel,et al.  Novel quantum well, quantum dot, and superlattice heterostructure based infrared detectors , 2009, Defense + Commercial Sensing.

[2]  Thomas Maier,et al.  Multispectral microbolometers for the midinfrared. , 2010, Optics letters.

[3]  Thomas Maier,et al.  Wavelength-tunable microbolometers with metamaterial absorbers. , 2009, Optics letters.

[4]  B. F. Levine Long-wavelength GaAs quantum-well infrared photodetectors , 1991, Other Conferences.

[5]  P. Kruse,et al.  Uncooled infrared imaging arrays and systems , 1997 .

[6]  Suzanne Paradis,et al.  Design of Dual-Band Uncooled Infrared Microbolometer , 2011, IEEE Sensors Journal.

[7]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[8]  D. Werner,et al.  Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. , 2011, ACS nano.

[9]  Masafumi Kimata,et al.  Wavelength selective uncooled infrared sensor by plasmonics , 2012 .

[10]  Susan Savage,et al.  Design and evaluation of a quantum-well-based resistive far-infrared bolometer , 2010, Security + Defence.

[11]  S. Hsu,et al.  Properties of plasma‐enhanced chemical‐vapor‐deposited a‐SiNx:H by various dilution gases , 1994 .

[12]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[13]  Hai Zhu,et al.  Plasmonically enhanced thermomechanical detection of infrared radiation. , 2013, Nano letters.

[14]  J. Castracane,et al.  Amorphous silicon two-color microbolometer for uncooled IR detection , 2006, IEEE Sensors Journal.

[15]  M. Gunde,et al.  Infrared Optical Constants and Dielectric Response Functions of Silicon Nitride and Oxynitride Films , 2001 .

[16]  Yrjö Rauste,et al.  Satellite-based forest fire detection for fire control in boreal forests , 1997 .

[17]  Aníbal Ollero,et al.  An Intelligent System for False Alarm Reduction in Infrared Forest-Fire Detection , 2000, IEEE Intell. Syst..

[18]  Dariu Gavrila,et al.  Sensor-Based Pedestrian Protection , 2001, IEEE Intell. Syst..

[19]  Joseph J. Talghader,et al.  Spectral selectivity in infrared thermal detection , 2012, Light: Science & Applications.

[20]  Masafumi Kimata,et al.  Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber , 2013 .

[21]  W. Yau,et al.  A perspective on medical infrared imaging , 2005, Journal of medical engineering & technology.

[22]  Audun Roer,et al.  Low cost, high performance far infrared microbolometer , 2010, Photonics Europe.

[23]  Antoni Rogalski,et al.  HgCdTe infrared detector material: history, status and outlook , 2005 .

[24]  Sanjay Krishna,et al.  Demonstration of a 320×256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors , 2005 .

[25]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[26]  Sir B. Rafol,et al.  Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera , 2000 .