Development of a piezoelectrically actuated cell stretching device

In this study a piezoelectric actuator was designed and built to subject osteoblasts and human endothelial cells to cyclic tensile strains in order to study the effects of such loading on cell growth. As the cells are quite sensitive and must be kept submerged in a culture media at all times, a device was constructed to hold the cells in place and to subject them to loads inside a petri dish. Critical aspects of the design were a limited choice of materials because of biocompatibility and the need for sterilization, and the required strain levels to which the material was to be subjected. Current deices for stretching cells cannot consistently produce such small strains. This paper describes how a THUNDER piezoelectric actuator was used as the prime mover in a device designed to excite cells under conditions that have not yet been achieved in the lab.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  S M Tanaka,et al.  A new mechanical stimulator for cultured bone cells using piezoelectric actuator. , 1999, Journal of biomechanics.

[3]  G. L’italien,et al.  Device for the application of a dynamic biaxially uniform and isotropic strain to a flexible cell culture membrane , 1994, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.