Some properties of the factors of Sturmian sequences

In this paper, we introduce the singular words of Sturmian sequences, which play an important role in studying the properties of the factors of Sturmian sequence. We also completely determine the powers of the factors, the overlaps of the factors and the structure of the palindromes of the factors.

[1]  A. S. Fraenkel,et al.  Determination of [nθ] by its Sequence of*Differences , 1978, Canadian Mathematical Bulletin.

[2]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[3]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[4]  J. Berstel,et al.  Recent Results in Sturmian Words 1 , 1996 .

[5]  M. Lothaire,et al.  Algebraic Combinatorics on Words: Index of Notation , 2002 .

[6]  David Burton Elementary Number Theory , 1976 .

[7]  R. Baer,et al.  The Significance of the System of Subgroups for the Structure of the Group , 1939 .

[8]  Patrice Séébold,et al.  Fibonacci Morphisms and Sturmian Words , 1991, Theor. Comput. Sci..

[9]  Underwood Dudley Elementary Number Theory , 1978 .

[10]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[11]  Caroline Series,et al.  The geometry of markoff numbers , 1985 .

[12]  Shin-ichi Yasutomi,et al.  On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y] , 1990 .

[13]  Filippo Mignosi,et al.  Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..

[14]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[15]  J. Allouche,et al.  Hankel determinants of the Thue-Morse sequence , 1998 .

[16]  Jean Berstel,et al.  On the Index of Sturmian Words , 1999, Jewels are Forever.

[17]  Zhi-Xiong Wen,et al.  Some Properties of the Singular Words of the Fibonacci Word , 1994, Eur. J. Comb..

[18]  Filippo Mignosi,et al.  On the Number of Factors of Sturmian Words , 1991, Theor. Comput. Sci..

[19]  K. Stolarsky,et al.  Beatty Sequences, Continued Fractions, and Certain Shift Operators , 1976, Canadian Mathematical Bulletin.

[20]  David Damanik,et al.  The Index of Sturmian Sequences , 2002, Eur. J. Comb..

[21]  Drew Vandeth,et al.  Sturmian words and words with a critical exponent , 2000, Theor. Comput. Sci..

[22]  Tom C. Brown A Characterization of the Quadratic Irrationals , 1991, Canadian Mathematical Bulletin.