Silicon carbide high-power devices

In recent years, silicon carbide has received increased attention because of its potential for high-power devices. The unique material properties of SiC, high electric breakdown field, high saturated electron drift velocity, and high thermal conductivity are what give this material its tremendous potential in the power device arena. 4H-SiC Schottky barrier diodes (1400 V) with forward current densities over 700 A/cm/sup 2/ at 2 V have been demonstrated. Packaged SITs have produced 57 W of output power at 500 MHz, SiC UMOSFETs (1200 V) are projected to have 15 times the current density of Si IGBTs (1200 V). Submicron gate length 4H-SiC MESFETs have achieved f/sub max/=32 GHz, f/sub T/=14.0 GHz, and power density=2.8 W/mm @ 1.8 GHz. The performances of a wide variety of SiC devices are compared to that of similar Si and GaAs devices and to theoretically expected results.

[1]  E. Johnson Physical limitations on frequency and power parameters of transistors , 1965 .

[2]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[3]  R. W. Keyes,et al.  Figure of merit for semiconductors for high-speed switches , 1972 .

[4]  J. Nishizawa,et al.  Field-effect transistor versus analog transistor (static induction transistor) , 1975, IEEE Transactions on Electron Devices.

[5]  B. J. Baliga,et al.  Semiconductors for high‐voltage, vertical channel field‐effect transistors , 1982 .

[6]  I. Bencuya,et al.  Static induction transistors optimized for high-voltage operation and high microwave power output , 1985, IEEE Transactions on Electron Devices.

[7]  D. Ueda,et al.  An ultra-low on-resistance power MOSFET fabricated by using a fully self-aligned process , 1987, IEEE Transactions on Electron Devices.

[8]  B. J. Baliga,et al.  Power semiconductor device figure of merit for high-frequency applications , 1989, IEEE Electron Device Letters.

[9]  Krishna Shenai,et al.  Optimum semiconductors for high-power electronics , 1989 .

[10]  Robert J. Trew,et al.  The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications , 1991, Proc. IEEE.

[11]  B. J. Baliga,et al.  Silicon-carbide high-voltage (400 V) Schottky barrier diodes , 1992, IEEE Electron Device Letters.

[12]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[13]  Bantval J. Baliga,et al.  Controlling the characteristics of the MPS rectifier by variation of area of Schottky region , 1993 .

[14]  S. Sriram,et al.  RF performance of SiC MESFET's on high resistivity substrates , 1994, IEEE Electron Device Letters.

[15]  J. Palmour,et al.  4H-SiC MESFET with 2.8 W/mm power density at 1.8 GHz , 1994, IEEE Electron Device Letters.

[16]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[17]  P. Neudeck,et al.  Performance limiting micropipe defects in silicon carbide wafers , 1994, IEEE Electron Device Letters.

[18]  J. Palmour,et al.  Conductivity Anisotropy in Epitaxial 6H and 4H Sic , 1994 .

[19]  T. P. Chow,et al.  Wide bandgap compound semiconductors for superior high-voltage unipolar power devices , 1994 .

[20]  Philip G. Neudeck,et al.  2000 V 6H-SIC P-N JUNCTION DIODES GROWN BY CHEMICAL VAPOR DEPOSITION , 1994 .

[21]  D. Alok,et al.  A simple edge termination for silicon carbide devices with nearly ideal breakdown voltage , 1994, IEEE Electron Device Letters.

[22]  R. Raghunathan,et al.  High voltage 4H-SiC Schottky barrier diodes , 1995, IEEE Electron Device Letters.

[23]  30 W VHF 6H-SiC power static induction transistor , 1995, Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits.

[24]  T. Kimoto,et al.  High performance of high-voltage 4H-SiC Schottky barrier diodes , 1995, IEEE Electron Device Letters.

[25]  S. Sriram,et al.  High efficiency operation of 6-H SiC MESFETs at 6 GHz , 1995, 1995 53rd Annual Device Research Conference Digest.

[26]  M. Bozack,et al.  High‐temperature ohmic contact to n‐type 6H‐SiC using nickel , 1995 .

[27]  Anne Henry,et al.  A 4.5 kV 6H silicon carbide rectifier , 1995 .

[28]  M. Skowronski,et al.  Semi‐insulating 6H–SiC grown by physical vapor transport , 1995 .

[29]  Bias dependence of RF power characteristics of 4H-SiC MESFETs , 1995, Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits.

[30]  C. Weitzel,et al.  Comparison of SiC, GaAs, and Si RF MESFET power densities , 1995, IEEE Electron Device Letters.

[32]  Ali Salih,et al.  GaAs rectifiers for power supply and motor control applications , 1995, Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition - APEC'95.

[33]  A. Steckl,et al.  Residue‐Free Reactive Ion Etching of Silicon Carbide in Fluorinated Plasmas II . , 1995 .

[34]  P. A. Orphanos,et al.  High power 4H-SiC static induction transistors , 1995, Proceedings of International Electron Devices Meeting.

[35]  A.W. Morse,et al.  The mixed mode 4H-SiC SIT as an S-band microwave power transistor , 1996, 1996 54th Annual Device Research Conference Digest.