New Sequences of Period p n and p n + 1 via Projective Linear Groups

Two pseudorandom number generators are devised based on the projective linear group over \(\mathbb{F}_{p^n}\), outputting balanced sequences on \(\mathbb{F}_{p}\) meeting some statistical randomness properties. Sequences generated by the first generator have least period p n + 1 if p n ≥ 7, and linear complexity at least p n − p n − 1. Furthermore, autocorrelation of such sequences oscillates within a low amplitude except for the trivial peaks. If p n ∉ {2,4,8,16}, sequences generated by the second generator have least period p n , linear complexity at least p n − 1 + 1, and good k-error linear complexity when p = 2. If p = 2 and 2 n is large enough, then for a binary sequence generated by either generator, a randomly chosen 2-tuple is almost uniformly distributed in {00,01,10,11}, the probability that a randomly chosen 3-tuple is a run of length one is approximately 1/4. For such a binary sequence \(\vec{s}\) and integers 0 < i 1 < i 2 < ⋯ < i k ≤ m, s(t) + s(t + i 1) + s(t + i 2) + ⋯ + s(t + i k ) is equal to 0 or 1 at almost the same probability when m is far less than 2 n/2.

[1]  Jürgen Lehn,et al.  A non-linear congruential pseudo random number generator , 1986 .

[2]  Shu Lin,et al.  Applied Algebra, Algebraic Algorithms and Error-Correcting Codes , 1999, Lecture Notes in Computer Science.

[3]  Igor E. Shparlinski,et al.  Dynamical Systems Generated by Rational Functions , 2003, AAECC.

[4]  C. Ding,et al.  Stream Ciphers and Number Theory , 1998 .

[5]  Claude Carlet,et al.  Sequences and Their Applications - SETA 2010 - 6th International Conference, Paris, France, September 13-17, 2010. Proceedings , 2010, SETA.

[6]  Cunsheng Ding,et al.  Lower Bounds on the Weight Complexities of Cascaded Binary Sequences , 1990, AUSCRYPT.

[7]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[8]  Harald Niederreiter,et al.  Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators , 2000 .

[9]  Fred J. Hickernell,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .

[10]  Cunsheng Ding,et al.  A simple stream cipher with proven properties , 2011, Cryptography and Communications.

[11]  Wun-Seng Chou,et al.  On inversive maximal period polynomials over finite fields , 1995, Applicable Algebra in Engineering, Communication and Computing.

[12]  Cunsheng Ding,et al.  The Stability Theory of Stream Ciphers , 1991, Lecture Notes in Computer Science.

[13]  Harald Niederreiter,et al.  Lattice Structure and Linear Complexity of Nonlinear Pseudorandom Numbers , 2002, Applicable Algebra in Engineering, Communication and Computing.

[14]  Takashi Kato,et al.  On a nonlinear congruential pseudorandom number generator , 1996, Math. Comput..

[15]  晋輝 趙,et al.  H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete Math. Appl. (Boca Raton)., Chapman & Hall/CRC, 2006年,xxxiv + 808ページ. , 2009 .

[16]  Harald Niederreiter,et al.  Digital inversive pseudorandom numbers , 1994, TOMC.

[17]  Enrico Bombieri,et al.  On Exponential Sums in Finite Fields , 1966 .

[18]  Arne Winterhof,et al.  Recent Results on Recursive Nonlinear Pseudorandom Number Generators - (Invited Paper) , 2010, SETA.

[19]  Tanja Lange,et al.  Handbook of Elliptic and Hyperelliptic Curve Cryptography , 2005 .

[20]  Kenneth G. Paterson Perfect factors in the de Bruijn graph , 1995, Des. Codes Cryptogr..

[21]  Harald Niederreiter,et al.  On the correlation of pseudorandom numbers generated by inversive methods , 2008 .

[22]  Amr M. Youssef,et al.  Cryptographic properties of the Welch-Gong transformation sequence generators , 2002, IEEE Trans. Inf. Theory.

[23]  Igor E. Shparlinski,et al.  Recent Advances in the Theory of Nonlinear Pseudorandom Number Generators , 2002 .

[24]  Matthew J. B. Robshaw,et al.  New Stream Cipher Designs: The eSTREAM Finalists , 2008 .

[25]  Jürgen Eichenauer-Herrmann,et al.  A new inversive congruential pseudorandom number generator with power of two modulus , 1992, TOMC.

[26]  Kenneth G. Paterson,et al.  Permutation Polynomials, de Bruijn Sequences, and Linear Complexity , 1996, J. Comb. Theory, Ser. A.

[27]  Igor E. Shparlinski,et al.  Predicting nonlinear pseudorandom number generators , 2004, Math. Comput..

[28]  A. Weil On Some Exponential Sums. , 1948, Proceedings of the National Academy of Sciences of the United States of America.