Full likelihood inference for max‐stable data

We show how to perform full likelihood inference for max-stable multivariate distributions or processes based on a stochastic Expectation-Maximisation algorithm, which combines statistical and computational efficiency in high-dimensions. The good performance of this methodology is demonstrated by simulation based on the popular logistic and Brown--Resnick models, and it is shown to provide dramatic computational time improvements with respect to a direct computation of the likelihood. Strategies to further reduce the computational burden are also discussed.

[1]  A. Davison,et al.  Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes , 2009, 0911.5357.

[2]  Clément Dombry,et al.  Regular conditional distributions of continuous max-infinitely divisible random fields , 2013 .

[3]  Claudia Kluppelberg,et al.  Statistical inference for max‐stable processes in space and time , 2012, 1204.5581.

[4]  S. Nielsen The stochastic EM algorithm: estimation and asymptotic results , 2000 .

[5]  Stefano Castruccio,et al.  High-Order Composite Likelihood Inference for Max-Stable Distributions and Processes , 2014, 1411.0086.

[6]  Marc G. Genton,et al.  A comparison of dependence function estimators in multivariate extremes , 2018, Stat. Comput..

[7]  Raphael Huser,et al.  Space–time modelling of extreme events , 2012, 1201.3245.

[8]  Johan Segers,et al.  An M‐estimator of spatial tail dependence , 2014, 1403.1975.

[9]  Thomas Opitz,et al.  Efficient inference and simulation for elliptical Pareto processes , 2013, 1401.0168.

[10]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[11]  Richard L. Smith,et al.  MAX-STABLE PROCESSES AND SPATIAL EXTREMES , 2005 .

[12]  Anthony C. Davison,et al.  Spectral Density Ratio Models for Multivariate Extremes , 2014 .

[13]  Marco Oesting,et al.  Bayesian inference for multivariate extreme value distributions , 2016, 1611.05602.

[14]  Brian J Reich,et al.  A HIERARCHICAL MAX-STABLE SPATIAL MODEL FOR EXTREME PRECIPITATION. , 2013, The annals of applied statistics.

[15]  Marc G. Genton,et al.  Tukey max-stable processes for spatial extremes , 2016 .

[16]  David E. Keyes,et al.  Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities , 2018 .

[17]  T. Opitz,et al.  Extremal tt processes: Elliptical domain of attraction and a spectral representation , 2012, J. Multivar. Anal..

[18]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[19]  Claudia Klüppelberg,et al.  Generalised least squares estimation of regularly varying space-time processes based on flexible observation schemes , 2017, Extremes.

[20]  Laurens de Haan,et al.  Stationary max-stable fields associated to negative definite functions. , 2008, 0806.2780.

[21]  Mathieu Ribatet,et al.  Conditional simulation of max-stable processes , 2012, 1208.5376.

[22]  J. L. Wadsworth,et al.  On the occurrence times of componentwise maxima and bias in likelihood inference for multivariate max-stable distributions , 2014, 1410.6733.

[23]  S. Padoan,et al.  Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.

[24]  A. Davison,et al.  Geostatistics of Dependent and Asymptotically Independent Extremes , 2013, Mathematical Geosciences.

[25]  Marco Oesting,et al.  Asymptotic properties of the maximum likelihood estimator for multivariate extreme value distributions , 2016, 1612.05178.

[26]  Mathieu Ribatet,et al.  Spatial extremes: Max-stable processes at work , 2013 .

[27]  Daoji Shi,et al.  Fisher information for a multivariate extreme value distribution , 1995 .

[28]  N. Reid,et al.  AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS , 2011 .

[29]  Marc G. Genton,et al.  On the likelihood function of Gaussian max-stable processes , 2011 .

[30]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[31]  Jonathan A. Tawn,et al.  Exploiting occurrence times in likelihood inference for componentwise maxima , 2005 .

[32]  A. Davison,et al.  Likelihood estimators for multivariate extremes , 2014, 1411.3448.

[33]  Raphael de Fondeville,et al.  High-dimensional peaks-over-threshold inference for the Brown-Resnick process , 2016, 1605.08558.

[34]  Martin Schlather,et al.  Models for Stationary Max-Stable Random Fields , 2002 .

[35]  Marc G. Genton,et al.  Tapered composite likelihood for spatial max-stable models , 2014 .

[36]  Anthony C. Davison,et al.  Bayesian inference for the Brown-Resnick process, with an application to extreme low temperatures , 2015, 1506.07836.

[37]  Christian Y. Robert,et al.  Likelihood Inference for Multivariate Extreme Value Distributions Whose Spectral Vectors have known Conditional Distributions , 2017 .

[38]  Marco Oesting,et al.  Exact simulation of max-stable processes. , 2015, Biometrika.

[39]  A. Davison,et al.  Composite likelihood estimation for the Brown–Resnick process , 2013 .

[40]  Marc G. Genton,et al.  Non-Stationary Dependence Structures for Spatial Extremes , 2014, 1411.3174.

[41]  J. Booth,et al.  Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm , 1999 .

[42]  L. de Haan,et al.  A Spectral Representation for Max-stable Processes , 1984 .

[43]  Anthony C. Davison,et al.  Statistics of Extremes , 2015 .

[44]  J. Tawn,et al.  Efficient inference for spatial extreme value processes associated to log-Gaussian random functions , 2014 .