Moment data can be analytically completed
暂无分享,去创建一个
[1] L. Shapley,et al. Geometry of Moment Spaces , 1953 .
[2] Thomas F. Coleman,et al. A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables , 1992, SIAM J. Optim..
[3] A. Salam. On vector Hankel determinants , 2000 .
[4] Kazimierz Sobczyk,et al. Maximum entropy principle and non-stationary distributions of stochastic systems , 1996 .
[5] Philip E. Gill,et al. Practical optimization , 1981 .
[6] J. B. French. Elementary Principles of Spectral Distributions , 1980 .
[7] J. Shohat,et al. The problem of moments , 1943 .
[8] N. Akhiezer,et al. The Classical Moment Problem. , 1968 .
[9] G. Talenti. Recovering a function from a finite number of moments , 1987 .
[10] E. E. Tyrtyshnikov. How bad are Hankel matrices? , 1994 .
[11] D. Fasino. Spectral properties of Hankel matrices and numerical solutions of finite moment problems , 1995 .
[12] J. Trębicki,et al. Maximum entropy principle in stochastic dynamics , 1990 .
[13] Alexander V. Tikhonov,et al. Ill-Posed Problems in Natural Sciences , 1989 .
[14] Gerassimos A. Athanassoulis,et al. The truncated Hausdorff moment problem solved by using kernel density functions , 2002 .
[15] Holger Dette,et al. The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis , 1997 .
[16] C. Lawson,et al. Solving least squares problems , 1976, Classics in applied mathematics.
[17] D. Fasino,et al. Recovering a probabilty density from a finite number of moments and local a priori information , 1996 .