Within the next couple of years, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) will start the deployment of its next-generation geostationary meteorological satellites. The Meteosat Third Generation (MTG) is composed of four imaging (MTG-I) and two sounding (MTG-S) platforms. The satellites are three-axis stabilized, unlike the two previous generations of Meteosat that were spin stabilized, and carry two sets of remote sensing instruments each. Hence, in addition to providing continuity, the new system will provide an unprecedented capability from geostationary orbit. The payload on the MTG-I satellites are the 16-channel Flexible Combined Imager (FCI) and the Lightning Imager (LI). The payloads on the MTG-S satellites are the hyperspectral Infrared Sounder (IRS) and a high-resolution Ultraviolet–Visible–Near-Infrared (UVN) sounder Sentinel-4/UVN, provided by the European Commission. Today, hyperspectral sounding from geostationary orbit is provided by the Chinese Fengyun-4A (FY-4A) satellite Geostationary Interferometric Infrared Sounder (GIIRS) instrument, and lightning mappers are available on FY-4A and on the National Oceanic and Atmospheric Administration (NOAA) GOES-16 and GOES-17 satellites. Consequently, the development of science and applications for these types of instruments have a solid foundation. However, the IRS, LI, and Sentinel-4/UVN are a challenging first for Europe in a geostationary orbit. The four MTG-I and two MTG-S satellites are designed to provide 20 and 15.5 years of operational service, respectively. The launch of the first MTG-I is expected at the end of 2022 and the first MTG-S roughly a year later. This article describes the four instruments, outlines products and services, and addresses the evolution of the further applications.