A posteriori error estimates and adaptivity for finite element solutions in finite elasticity
暂无分享,去创建一个
[1] J. Z. Zhu,et al. Superconvergence recovery technique and a posteriori error estimators , 1990 .
[2] K. Mattiasson,et al. On the Accuracy and Efficiency of Numerical Algorithms for Geometrically Nonlinear Structural Analysis , 1986 .
[3] K. Washizu. Variational Methods in Elasticity and Plasticity , 1982 .
[4] Ivo Babuška,et al. On the Rates of Convergence of the Finite Element Method , 1982 .
[5] F. Hartmann. The Mathematical Foundation of Structural Mechanics , 1985 .
[6] Leszek Demkowicz,et al. Toward a universal h-p adaptive finite element strategy , 1989 .
[7] Ernst Rank,et al. An expert system for the optimal mesh design in the hp‐version of the finite element method , 1987 .
[8] Ivo Babuška,et al. Computational error estimates and adaptive processes for some nonlinear structural problems , 1982 .
[9] John R. Whiteman,et al. Pointwise superconvergence of recovered gradients for piecewise linear finite element approximations to problems of planar linear elasticity , 1990 .
[10] Ivo Babuška,et al. A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .
[11] O. Zienkiewicz,et al. Analysis of the Zienkiewicz–Zhu a‐posteriori error estimator in the finite element method , 1989 .
[12] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[13] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[14] D. Kelly,et al. The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .
[15] T. Strouboulis,et al. Recent experiences with error estimation and adaptivity, part II: Error estimation for h -adaptive approximations on grids of triangles and quadrilaterals , 1992 .
[16] Cv Clemens Verhoosel,et al. Non-Linear Finite Element Analysis of Solids and Structures , 1991 .
[17] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[18] G. Strang,et al. Geometric nonlinearity: potential energy, complementary energy, and the gap function , 1989 .
[19] J. Oden,et al. Variational Methods in Theoretical Mechanics , 1976 .
[20] T. Strouboulis,et al. Recent experiences with error estimation and adaptivity. Part I: Review of error estimators for scalar elliptic problems , 1992 .
[21] W. Rheinboldt,et al. On the Discretization Error of Parametrized Nonlinear Equations , 1983 .
[22] Leszek Demkowicz,et al. Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .
[23] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[24] Ivo Babuška,et al. Basic principles of feedback and adaptive approaches in the finite element method , 1986 .
[25] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[26] W. Rheinboldt,et al. LOCAL ERROR ESTIMATES FOR PARAMETRIZED NONLINEAR EQUATIONS , 1985 .
[27] Ivo Babuška,et al. A posteriori error analysis and adaptive processes in the finite element method: Part II—adaptive mesh refinement , 1983 .