Status, Challenges and Directions in Indirect Dark Matter Searches

Indirect searches for dark matter are based on detecting an anomalous flux of photons, neutrinos or cosmic-rays produced in annihilations or decays of dark matter candidates gravitationally accumulated in heavy cosmological objects, like galaxies, the Sun or the Earth. Additionally, evidence for dark matter that can also be understood as indirect can be obtained from early universe probes, like fluctuations of the cosmic microwave background temperature, the primordial abundance of light elements or the Hydrogen 21-cm line. The techniques needed to detect these different signatures require very different types of detectors: Air shower arrays, gamma- and X-ray telescopes, neutrino telescopes, radio telescopes or particle detectors in balloons or satellites. While many of these detectors were not originally intended to search for dark matter, they have proven to be unique complementary tools for direct search efforts. In this review we summarize the current status of indirect searches for dark matter, mentioning also the challenges and limitations that these techniques encounter.

[1]  G. B'elanger,et al.  The Z5 model of two-component dark matter , 2020, Journal of High Energy Physics.

[2]  M. Hardcastle,et al.  Radio constraints on dark matter annihilation in Canes Venatici I with LOFAR† , 2019, 1909.12355.

[3]  R. Sagdeev,et al.  High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.

[4]  L. A. Antonelli,et al.  Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies , 2016, 1601.06590.

[5]  J. Chiang,et al.  The Fermi Galactic Center GeV Excess and Implications for Dark Matter , 2017 .

[6]  E. Komatsu,et al.  Effects of velocity-dependent dark matter annihilation on the energy spectrum of the extragalactic gamma-ray background , 2010, 1009.3530.

[7]  S. Godfrey,et al.  Multi-component dark matter from a hidden gauged SU(3) , 2018, Proceedings of XXIX International Symposium on Lepton Photon Interactions at High Energies — PoS(LeptonPhoton2019).

[8]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[9]  Andrew Gould,et al.  Resonant Enhancements in Weakly Interacting Massive Particle Capture by the Earth , 1987 .

[10]  M. Ricotti Dependence of the inner dark matter profile on the halo mass , 2002, astro-ph/0212146.

[11]  Federico Marinacci,et al.  Cosmological simulations of galaxy formation , 2019 .

[12]  Edinburgh,et al.  Simulating the joint evolution of quasars, galaxies and their large-scale distribution , 2005, astro-ph/0504097.

[13]  D. Gerdes,et al.  SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT , 2016, 1611.03184.

[14]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[15]  Rennan Barkana,et al.  Possible interaction between baryons and dark-matter particles revealed by the first stars , 2018, Nature.

[16]  Wilczek,et al.  Solar System constraints and signatures for dark-matter candidates. , 1986, Physical review. D, Particles and fields.

[17]  F. Donato,et al.  Prospects to verify a possible dark matter hint in cosmic antiprotons with antideuterons and antihelium , 2017, 1711.08465.

[18]  William H. Lee,et al.  Multi-messenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A , 2020 .

[19]  E. Kolb,et al.  Nonthermal Supermassive Dark Matter , 1998, hep-ph/9805473.

[20]  Prospects for indirect detection of sneutrino dark matter with IceCube , 2009, 0907.1486.

[22]  C. Weniger,et al.  Background model systematics for the Fermi GeV excess , 2014, 1409.0042.

[23]  Il,et al.  Closing the window on strongly interacting dark matter with IceCube , 2010, 1001.1381.

[24]  S. Planelles,et al.  Large-Scale Structure Formation: From the First Non-linear Objects to Massive Galaxy Clusters , 2014, 1404.3956.

[25]  J. Beacom,et al.  Reverse direct detection: Cosmic ray scattering with light dark matter , 2018, Physical Review D.

[26]  The University of Manchester,et al.  The Cusp/Core problem: supernovae feedback versus the baryonic clumps and dynamical friction model , 2015, 1502.01947.

[27]  C. Rott,et al.  Superheavy dark matter and IceCube neutrino signals: Bounds on decaying dark matter , 2014, 1408.4575.

[28]  T. Slatyer,et al.  Evidence for Unresolved γ-Ray Point Sources in the Inner Galaxy. , 2015, Physical review letters.

[29]  S. Pittel,et al.  NUCLEAR PHYSICS OF DARK MATTER DETECTION , 1992 .

[30]  S. Pilipenko,et al.  The central cusps in dark matter halos: Fact or fiction? , 2018, Physics of the Dark Universe.

[31]  C. Savage,et al.  Fermi/LAT observations of dwarf galaxies highly constrain a dark matter interpretation of excess positrons seen in AMS-02, HEAT, and PAMELA , 2015, 1501.01618.

[32]  T. Slatyer Indirect dark matter signatures in the cosmic dark ages. II. Ionization, heating, and photon production from arbitrary energy injections , 2015, 1506.03812.

[33]  F. Kahlhoefer Review of LHC Dark Matter Searches , 2017, 1702.02430.

[34]  Graciela B. Gelmini,et al.  Cosmic abundances of stable particles: Improved analysis , 1991 .

[35]  R. Furlanetto,et al.  21 cm cosmology in the 21 st century , 2012 .

[36]  Edward W. Kolb,et al.  Superheavy dark matter , 1998 .

[37]  A. Heijboer,et al.  Search for dark matter towards the Galactic Centre with 11 years of ANTARES data , 2019, Physics Letters B.

[38]  JiJi Fan,et al.  Using Gaia DR2 to constrain local dark matter density and thin dark disk , 2018, Journal of Cosmology and Astroparticle Physics.

[39]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[40]  C. Rott,et al.  Constraining dark matter-neutrino interactions with IceCube-170922A , 2019, Physical Review D.

[41]  Albert Bosma,et al.  21-cm line studies of spiral galaxies. 2. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. , 1981 .

[42]  N. Rea,et al.  High-Energy Emission from Pulsars and their Systems , 2011 .

[43]  C. Weniger,et al.  A tale of tails: Dark matter interpretations of the Fermi GeV excess in light of background model systematics , 2014, 1411.4647.

[44]  D. Maurin,et al.  Antiprotons in cosmic rays from neutralino annihilation , 2004 .

[45]  Ny,et al.  Dark matter constraints from a joint analysis of dwarf Spheroidal galaxy observations with VERITAS , 2017, 1703.04937.

[46]  A. Boyarsky,et al.  Probing the nature of dark matter with deep XMM‐Newton observations of the dwarf spheroidal galaxies , 2017 .

[47]  A. Loeb,et al.  A small amount of mini-charged dark matter could cool the baryons in the early Universe , 2018, Nature.

[48]  J. Zavala Galactic PeV neutrinos from dark matter annihilation , 2014, 1404.2932.

[49]  T. Slatyer Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results , 2015, 1506.03811.

[50]  O. Mena,et al.  The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes , 2016, 1603.06795.

[51]  George Lake,et al.  Cold collapse and the core catastrophe , 1999 .

[53]  R. Sanders Does GW170817 falsify MOND? , 2018, International Journal of Modern Physics D.

[54]  G. D'Amico,et al.  Bounds on Dark-Matter Annihilations from 21-cm Data. , 2018, Physical review letters.

[55]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[56]  D. Hooper,et al.  On The Origin Of The Gamma Rays From The Galactic Center , 2011, 1110.0006.

[57]  D. Hooper,et al.  A robust excess in the cosmic-ray antiproton spectrum: Implications for annihilating dark matter , 2019, Physical Review D.

[58]  K. Bollweg,et al.  Upgrade of the Alpha Magnetic Spectrometer (AMS-02) for long term operation on the International Space Station (ISS) , 2011 .

[59]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[60]  R. Trotta,et al.  Prospects for dark matter detection with IceCube in the context of the CMSSM , 2009, 0906.0366.

[61]  K. Abazajian Sterile neutrinos in cosmology , 2017, 1705.01837.

[62]  J. Beacom,et al.  Constraining Very Heavy Dark Matter Using Diffuse Backgrounds of Neutrinos and Cascaded Gamma Rays , 2012, 1206.2595.

[63]  Hyun Min Lee,et al.  Cosmic abundances of SIMP dark matter , 2017, Journal of High Energy Physics.

[64]  M. D. Mauro,et al.  Production cross sections of cosmic antiprotons in the light of new data from the NA61 and LHCb experiments , 2018, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[65]  Is the dark matter interpretation of the EGRET gamma excess compatible with antiproton measurements , 2006, astro-ph/0602632.

[66]  P. Salucci,et al.  The universal rotation curve of spiral galaxies II: the dark matter distribution out to the virial radius , 2007 .

[67]  A. Boyarsky,et al.  Searching for decaying dark matter in deep XMM–Newton observation of the Draco dwarf spheroidal , 2015, 1512.07217.

[68]  I. Sarčević,et al.  Update on decaying and annihilating heavy dark matter with the 6-year IceCube HESE data , 2019, Journal of Cosmology and Astroparticle Physics.

[69]  P. Fox,et al.  WIMPs at the galactic center , 2014, 1411.2592.

[70]  J. Beacom,et al.  Almost closing the νMSM sterile neutrino dark matter window with NuSTAR , 2016, 1609.00667.

[71]  B. Fields,et al.  Big bang nucleosynthesis: Present status , 2015, 1505.01076.

[72]  M. Kawasaki,et al.  Electron and photon energy deposition in the Universe , 2008, 0805.3969.

[73]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[74]  A. Natarajan,et al.  Dark matter annihilation and its effect on CMB and Hydrogen 21 cm observations , 2009, 0903.4485.

[75]  Annika H. G. Peter,et al.  Cosmological simulations with self-interacting dark matter – II. Halo shapes versus observations , 2012, 1208.3026.

[76]  Markus Weber,et al.  Determination of the Local Dark Matter Density in our Galaxy , 2009, 0910.4272.

[77]  K. Zurek,et al.  Multi-Component Dark Matter , 2008, 0811.4429.

[78]  Particle dark matter constraints from the Draco dwarf galaxy , 2002, astro-ph/0203242.

[79]  B. Safdi,et al.  Foreground mismodeling and the point source explanation of the Fermi Galactic Center excess , 2020, Physical Review D.

[80]  H. Quintana,et al.  Dynamical interactions and astrophysical effects of stable heavy neutrinos. , 1978 .

[81]  J. Lesgourgues,et al.  A White Paper on keV sterile neutrino Dark Matter , 2016, 1602.04816.

[82]  M. Mapelli,et al.  Constraining dark matter through 21-cm observations , 2007, astro-ph/0701301.

[83]  I. collaboration Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert , 2018, Science.

[84]  Spergel,et al.  Observational evidence for self-interacting cold dark matter , 1999, Physical review letters.

[85]  J. Peñarrubia Fluctuations of the gravitational field generated by a random population of extended substructures , 2017, 1710.06443.

[86]  C. Frenk,et al.  Dark Matter Haloes and Subhaloes , 2019, Galaxies.

[87]  M. Kachelrieß,et al.  Heavy decaying dark matter and IceCube high energy neutrinos , 2018, 1805.04500.

[88]  J. Beacom,et al.  New constraints on sterile neutrino dark matter from NuSTAR M31 observations , 2019, Physical Review D.

[89]  R. Sanders The Dark Matter Problem: A Historical Perspective , 2010 .

[90]  S. Boucenna,et al.  Decaying leptophilic dark matter at IceCube , 2015, 1507.01000.

[91]  D. Malyshev,et al.  Decaying dark matter search with NuSTAR deep sky observations , 2016, 1607.07328.

[92]  Gino Tosti,et al.  Constraints on Dark Matter Models From a Fermi LAT Search for High-Energy Cosmic-Ray Electrons from the Sun , 2011, 1107.4272.

[93]  F. Richard,et al.  Search for Dark Matter at Colliders , 2014, 1411.0088.

[94]  D. Kazanas,et al.  The Case against Dark Matter and Modified Gravity: Flat Rotation Curves Are a Rigorous Requirement in Rotating Self-Gravitating Newtonian Gaseous Discs , 2015, 1510.05534.

[95]  Richard S. Ellis,et al.  Gravitational lensing: a unique probe of dark matter and dark energy , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[96]  K. Hultqvist,et al.  Sensitivity of IceCube-DeepCore to neutralino dark matter in the MSSM-25 , 2012, 1210.0844.

[97]  The impact of dark matter decays and annihilations on the formation of the first structures , 2006, astro-ph/0606483.

[98]  J. P. Barron,et al.  Search for neutrinos from dark matter self-annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore , 2017, 1705.08103.

[99]  T. Jeltema,et al.  Dark matter detection with hard X-ray telescopes , 2011, 1108.1407.

[100]  The Fermi-LAT Collaboration The Fermi Galactic Center GeV Excess and Implications for Dark Matter , 2017, 1704.03910.

[101]  Gould,et al.  Probing the Earth with weakly interacting massive particles. , 1989, Physical review. D, Particles and fields.

[102]  Dark matter and background light , 2004, astro-ph/0407207.

[103]  M. Lisanti,et al.  Testing dark matter and modifications to gravity using local Milky Way observables , 2018, Physical Review D.

[104]  T. G. Guzik,et al.  Extended Measurement of the Cosmic-Ray Electron and Positron Spectrum from 11 GeV to 4.8 TeV with the Calorimetric Electron Telescope on the International Space Station. , 2018, Physical review letters.

[105]  W. Xu The Latest Results from AMS on the Searches for Dark Matter , 2020 .

[106]  L. Roszkowski,et al.  Dark matter production in the early Universe: beyond the thermal WIMP paradigm , 2014, 1407.0017.

[107]  Y. Soreq,et al.  γ-ray Constraints on Decaying Dark Matter and Implications for IceCube. , 2016, Physical review letters.

[108]  A. Boyarsky,et al.  Sterile neutrino Dark Matter , 2018, Progress in Particle and Nuclear Physics.

[109]  M. Khlopov Probes for Dark Matter Physics , 2018, 1802.10184.

[110]  S. Kim,et al.  Search for neutrinos from annihilation of captured low-mass dark matter particles in the sun by super-kamiokande. , 2015, Physical review letters.

[111]  A. Bosma 21-CM LINE STUDIES OF SPIRAL GALAXIES .1. OBSERVATIONS OF THE GALAXIES NGC-5033, NGC-3198, NGC-5055, NGC-2841, AND NGC-7331 , 1981 .

[112]  D. Hooper,et al.  How dark matter reionized the Universe , 2009, 0904.1210.

[113]  A. Boyarsky,et al.  Constraints on decaying Dark Matter from XMM-Newton observations of M31 , 2007, 0709.2301.

[114]  William H. Lee,et al.  Combined dark matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS , 2019, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).

[115]  J. Silk,et al.  High-energy neutrinos from the sun and cold dark matter , 1987 .

[116]  Sterile neutrinos as dark matter. , 1993, Physical review letters.

[117]  A. Sommerfeld Über die Beugung und Bremsung der Elektronen , 1931 .

[118]  M. Pospelov,et al.  Secluded WIMP Dark Matter , 2007, 0711.4866.

[119]  J. Herndon The chemical composition of the interior shells of the Earth , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[120]  A. Mesinger,et al.  Unveiling the nature of dark matter with high redshift 21 cm line experiments , 2014, 1408.1109.

[121]  A. A. Smagina,et al.  Search for neutrino emission from relic dark matter in the sun with the Baikal NT200 detector , 2014, 1405.3551.

[122]  A. Burkert The Structure of Dark Matter Halos in Dwarf Galaxies , 1995 .

[123]  India.,et al.  A search for dark matter in Triangulum II with the MAGIC telescopes , 2020, 2003.05260.

[124]  G. Lake,et al.  The Structure of Cold Dark Matter Halos , 1998 .

[125]  S. McGaugh,et al.  A tale of two paradigms: the mutual incommensurability of ΛCDM and MOND , 2014, 1404.7525.

[126]  C. Weniger,et al.  Strong Support for the Millisecond Pulsar Origin of the Galactic Center GeV Excess. , 2015, Physical review letters.

[127]  Minoru Yoshida,et al.  Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande , 2004 .

[128]  F. Prada,et al.  Characterization of subhalo structural properties and implications for dark matter annihilation signals , 2016, 1603.04057.

[129]  Andreas Pargner,et al.  Phenomenology of Axion Dark Matter , 2019 .

[130]  H. Aihara,et al.  Letter of Intent: The Hyper-Kamiokande Experiment --- Detector Design and Physics Potential --- , 2011, 1109.3262.

[131]  E. Moulin,et al.  Search for dark matter signals toward the irregular dwarf galaxy WLM with H.E.S.S , 2019, Journal of Physics: Conference Series.

[132]  Hiroshi Takano,et al.  Multi-Component Dark Matter Systems and Their Observation Prospects , 2012, 1207.3318.

[133]  K. Mitsuda,et al.  A Search for a keV Signature of Radiatively Decaying Dark Matter with Suzaku XIS Observations of the X-ray Diffuse Background , 2015, 1504.02826.

[134]  S. Murgia,et al.  Search for Gamma-ray Emission from p-wave Dark Matter Annihilation in the Galactic Center. , 2019, Physical review. D..

[135]  B. Dutta,et al.  Indirect detection of the partial p wave via the s wave in the annihilation cross section of dark matter , 2019, Physical Review D.

[136]  A. Ringwald,et al.  Cosmic rays from leptophilic dark matter decay via kinetic mixing , 2009, 0903.3625.

[137]  Jonathan L. Feng,et al.  Sommerfeld enhancements for thermal relic dark matter , 2010, 1005.4678.

[138]  E. Moulin,et al.  Dark Matter Search with H.E.S.S. Towards Ultra-faint Dwarf Nearby DES Satellites of the Milky Way , 2019, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[139]  K. Mitsuda,et al.  An X-ray Spectroscopic Search for Dark Matter in the Perseus Cluster with Suzaku , 2014, 1412.1869.

[140]  P. Mijakowski Dark Matter Searches at Super-Kamiokande , 2020, Journal of Physics: Conference Series.

[141]  M. Vogelsberger,et al.  Subhaloes in self-interacting galactic dark matter haloes , 2012, 1201.5892.

[142]  K. Nakayama,et al.  Effects of Dark Matter Annihilation on the Cosmic Microwave Background , 2009, 0907.3985.

[143]  A. Boyarsky,et al.  Constraints on sterile neutrinos as dark matter candidates from the diffuse X-ray background , 2005, astro-ph/0512509.

[144]  M. Ahlers,et al.  Testing the Dark Matter Scenario for PeV Neutrinos Observed in IceCube. , 2015, Physical review letters.

[145]  D. Seckel,et al.  Detailed neutrino spectra from cold dark-matter annihilations in the sun , 1988 .

[147]  A. Natarajan,et al.  Effect of early dark matter halos on reionization , 2008 .

[148]  A. Gould,et al.  Probing the Earth with WIMPS * , 1988 .

[149]  William H. Lee,et al.  Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A , 2018, Science.

[150]  The clumpiness of cold dark matter: implications for the annihilation signal , 2002, astro-ph/0207299.

[151]  A. Heijboer,et al.  Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope , 2016, 1603.02228.

[152]  John F Beacom,et al.  Upper bound on the dark matter total annihilation cross section. , 2007, Physical review letters.

[153]  D. Malyshev,et al.  Pulsars versus dark matter interpretation of ATIC/PAMELA , 2009, 0903.1310.

[154]  M. M. Boliev,et al.  Search for muon signal from dark matter annihilations in the Sun with the Baksan Underground Scintillator Telescope for 24.12 years , 2013, 1301.1138.

[155]  J. Gunn Massive galactic halos. I. Formation and evolution. , 1977 .

[156]  R. Sagdeev,et al.  Towards Understanding the Origin of Cosmic-Ray Positrons and Electrons , 2021, Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020).

[157]  Jonathan L. Feng Dark Matter Candidates from Particle Physics and Methods of Detection , 2010, 1003.0904.

[158]  Masao Mori,et al.  THE CORE–CUSP PROBLEM IN COLD DARK MATTER HALOS AND SUPERNOVA FEEDBACK: EFFECTS OF OSCILLATION , 2010, 1206.5412.

[159]  T. Asaka,et al.  The nuMSM, dark matter and neutrino masses , 2005, hep-ph/0503065.

[160]  V. Golev,et al.  Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy , 2011 .

[161]  Impact of dark matter decays and annihilations on reionization , 2006, astro-ph/0603237.

[162]  Intergalactic medium heating by dark matter , 2006, astro-ph/0606482.

[163]  W. Press,et al.  Effect of hypothetical, weakly interacting, massive particles on energy transport in the solar interior , 1985 .

[164]  M. Kamionkowski,et al.  Ultimate target for dark matter searches , 2014, 1412.3463.

[165]  P. Fusco The DAMPE experiment and its latest results , 2019, Journal of Physics: Conference Series.

[166]  S. Sarkar,et al.  Big-Bang Nucleosynthesis , 2014, 1412.1408.

[167]  P. Favali,et al.  Letter of intent for KM3NeT 2.0 , 2016, 1601.07459.

[168]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[169]  A. Heijboer,et al.  Search for dark matter annihilation in the earth using the ANTARES neutrino telescope , 2016, 1612.06792.

[170]  Abraham Loeb,et al.  21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.

[171]  A. Herrero,et al.  Constraining Secluded Dark Matter models with the public data from the 79-string IceCube search for dark matter in the Sun , 2017, 1701.08863.

[172]  M. Casolino,et al.  Cosmic-ray positron energy spectrum measured by PAMELA. , 2013, Physical review letters.

[173]  M. Kachelriess,et al.  Heavy decaying dark matter and IceCube high energy neutrinos , 2018, Physical Review D.

[174]  K. Nakayama,et al.  CMB constraint on dark matter annihilation after Planck 2015 , 2015, 1512.08015.

[175]  Rotation Curves of Spiral Galaxies , 2000, astro-ph/0010594.

[176]  T Meures,et al.  Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data , 2014, 1405.5303.

[177]  T. Moroi,et al.  Revisiting big-bang nucleosynthesis constraints on dark-matter annihilation , 2015, 1509.03665.

[178]  M. Markevitch,et al.  Limits on the Radiative Decay of Sterile Neutrino Dark Matter from the Unresolved Cosmic and Soft X-ray Backgrounds , 2006, astro-ph/0611144.

[179]  D. Seckel,et al.  Primordial nucleosynthesis: The effects of injecting hadrons. , 1988, Physical review. D, Particles and fields.

[180]  N. Haba,et al.  Universally Leptophilic Dark Matter From Non-Abelian Discrete Symmetry , 2010, 1008.4777.

[181]  M. V. Fernandes,et al.  H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center. , 2016, Physical review letters.

[182]  P. Ullio,et al.  Cosmological dark matter annihilations into γ rays: A closer look , 2002, astro-ph/0207125.

[183]  Yue Zhao,et al.  Unconventional dark matter models: a brief review , 2015 .

[184]  J. P. Barron,et al.  Search for neutrinos from decaying dark matter with IceCube , 2018, The European Physical Journal. C, Particles and Fields.

[185]  J. W. Watts,et al.  An excess of cosmic ray electrons at energies of 300–800 GeV , 2008, Nature.

[186]  L. Maccione,et al.  Constraints on particle dark matter from cosmic-ray antiprotons , 2013, 1312.3579.

[187]  Curtis N. James,et al.  A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope , 2016, 1602.07000.

[188]  S. Shaklan,et al.  Neutron Stars , 2009 .

[189]  A. Gould,et al.  Neuton stars: Graveyard of charged dark matter , 1990 .

[190]  J. Aleksic,et al.  Latest results on searches for dark matter signatures in galactic and extragalactic selected targets by the MAGIC Telescopes , 2016 .

[191]  P. Fox,et al.  Leptophilic dark matter , 2008, 0811.0399.

[192]  S. Matsumoto,et al.  Neutrinos at IceCube from heavy decaying dark matter , 2013, 1303.7320.

[193]  C. Stahl,et al.  Large scale structures: from inflation to today: a brief report , 2019, 1910.03931.

[194]  F. Donato,et al.  Galactic electrons and positrons at the Earth: new estimate of the primary and secondary fluxes , 2010, 1002.1910.

[195]  P. Serpico,et al.  Are IceCube neutrinos unveiling PeV-scale decaying dark matter? , 2013, 1308.1105.

[196]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.

[197]  M. D. Shelepov,et al.  Dark matter constraints from an observation of dSphs and the LMC with the Baikal NT200 , 2016, 1612.03836.

[198]  R. Catena,et al.  Form factors for dark matter capture by the Sun in effective theories , 2015, 1501.03729.

[199]  Primordial gas heating by dark matter and structure formation , 2007, 0706.3357.

[200]  R. Essig,et al.  Constraining light dark matter with diffuse X-ray and gamma-ray observations , 2013, 1309.4091.

[201]  B. Grzadkowski,et al.  Multi-component dark matter: the vector and fermion case , 2017, The European Physical Journal C.

[202]  A. Deur An explanation for dark matter and dark energy consistent with the standard model of particle physics and General Relativity , 2017, The European Physical Journal C.

[203]  T. Gaisser,et al.  Limits on cold-dark-matter candidates from deep underground detectors. , 1986, Physical review. D, Particles and fields.

[204]  K. Zurek,et al.  Leptophilic dark matter from the lepton asymmetry. , 2009, Physical review letters.

[205]  V. Belokurov,et al.  Inferred Evidence for Dark Matter Kinematic Substructure with SDSS–Gaia , 2018, The Astrophysical Journal.

[206]  T. Slatyer,et al.  Implications of a 21-cm signal for dark matter annihilation and decay , 2018, Physical Review D.

[207]  J. A. Garc'ia-Gonz'alez,et al.  Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory , 2017, 1706.01277.

[208]  J. Basdevant,et al.  Is there room for changed dark matter , 1990 .

[209]  Pasquale Dario Serpico,et al.  Pulsars as the sources of high energy cosmic ray positrons , 2008, 0810.1527.

[210]  Alan E. E. Rogers,et al.  An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.

[211]  Fabio Governato,et al.  Cold dark matter: Controversies on small scales , 2013, Proceedings of the National Academy of Sciences.

[212]  G. Donvito,et al.  Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons , 2017, Nature.

[213]  M. Casolino,et al.  Ten years of PAMELA in space , 2018, 1801.10310.

[214]  J. Beacom,et al.  Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation , 2012, 1204.3622.

[215]  E. Charles,et al.  Search for γ -ray emission from dark matter particle interactions from the Andromeda and Triangulum galaxies with the Fermi Large Area Telescope , 2019, Physical Review D.

[216]  J. G. Gonzalez,et al.  Search for annihilating dark matter in the Sun with 3 years of IceCube data , 2016, 1612.05949.

[217]  S. Palomares-Ruiz Tests of Dark Matter Scenarios with Neutrino Telescopes , 2020 .

[218]  S. Allen,et al.  A Suzaku Search for Dark Matter Emission Lines in the X-ray Brightest Galaxy Clusters , 2014, 1411.0050.

[219]  William H. Lee,et al.  A search for dark matter in the Galactic halo with HAWC , 2017, 1710.10288.

[220]  J. Einasto On the Construction of a Composite Model for the Galaxy and on the Determination of the System of Galactic Parameters , 1965 .

[221]  J. Beacom,et al.  GeV-scale thermal WIMPs: Not even slightly ruled out , 2018, Physical Review D.

[222]  L. Hernquist,et al.  An Analytical Model for Spherical Galaxies and Bulges , 1990 .

[223]  L. Chuzhoy Impact of Dark Matter Annihilation on the High-Redshift Intergalactic Medium , 2007, 0710.1856.

[224]  P. Panci 21-cm line Anomaly: A brief Status , 2019, 1907.13384.

[225]  Andrew Gould,et al.  Resonant Enhancements In WIMP Capture By The Earth , 1987 .

[226]  John F. Beacom,et al.  Powerful solar signatures of long-lived dark mediators , 2017, 1703.04629.

[227]  Indirect constraints on the dark matter interpretation of excess positrons seen by AMS-02 , 2015, 1509.06127.

[228]  W. J. Blok,et al.  The Core-Cusp Problem , 2009, 0910.3538.

[229]  The Cores of dark matter dominated galaxies: Theory versus observations , 1997, astro-ph/9708176.

[230]  Constraints on sterile neutrino dark matter from XMM–Newton observations of M33 , 2011, 1109.5943.

[231]  M. Bondi,et al.  Searching for light dark matter at fixed target experiments , 2020, Journal of Physics: Conference Series.

[232]  P. Salucci The distribution of dark matter in galaxies , 2018, The Astronomy and Astrophysics Review.

[233]  R. Gandhi,et al.  Boosted dark matter and its implications for the features in IceCube HESE data , 2016, 1612.02834.

[234]  J. Silk,et al.  Searching for secluded dark matter with H.E.S.S., Fermi-LAT, and Planck , 2017, 1711.03133.

[235]  G. Miele,et al.  Interpreting IceCube 6-year HESE data as an evidence for hundred TeV decaying Dark Matter , 2017, 1707.05241.

[236]  B. Fields,et al.  Big bang nucleosynthesis: Present status , 2016 .

[237]  M. Winkler,et al.  A precision search for WIMPs with charged cosmic rays , 2017, 1712.00002.

[238]  E. Amato,et al.  Positrons from pulsar winds , 2010, 1007.4745.

[239]  B. Dutta,et al.  Indirect detection of the partial p wave via the s wave in the annihilation cross section of dark matter , 2019, Physical Review D.

[240]  Anirban Das,et al.  Selection Rule for Enhanced Dark Matter Annihilation. , 2016, Physical review letters.

[241]  Q. Yuan,et al.  Pulsar interpretation for the AMS-02 result , 2013, 1304.4128.

[242]  B. Famaey,et al.  Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions , 2011, Living Reviews in Relativity.

[243]  F. Iocco,et al.  Handling the uncertainties in the Galactic Dark Matter distribution for particle Dark Matter searches , 2019, Journal of Cosmology and Astroparticle Physics.

[244]  S. Profumo Dissecting cosmic-ray electron-positron data with Occam’s razor: the role of known pulsars , 2008, 0812.4457.

[245]  M. Kramer,et al.  Scrutinizing the evidence for dark matter in cosmic-ray antiprotons , 2019, Physical Review D.

[246]  M. Schumann Direct detection of WIMP dark matter: concepts and status , 2019, Journal of Physics G: Nuclear and Particle Physics.

[247]  T. G. Guzik,et al.  Energy Spectrum of Cosmic-Ray Electron and Positron from 10 GeV to 3 TeV Observed with the Calorimetric Electron Telescope on the International Space Station. , 2017, Physical review letters.

[248]  C. Kopper Observation of Astrophysical Neutrinos in Six Years of IceCube Data , 2017 .

[249]  Cosmic antiprotons as a probe for supersymmetric dark matter , 1999, astro-ph/9902012.

[250]  C. Argüelles,et al.  Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos. , 2017, Physical review letters.

[251]  Mario Kadastik,et al.  PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection , 2010, 1012.4515.

[252]  D. Hooper,et al.  Dark matter annihilation in the Galactic Center as seen by the Fermi Gamma Ray Space Telescope , 2010, 1010.2752.

[253]  D. Finkbeiner,et al.  GIANT GAMMA-RAY BUBBLES FROM FERMI-LAT: ACTIVE GALACTIC NUCLEUS ACTIVITY OR BIPOLAR GALACTIC WIND? , 2010, 1005.5480.

[254]  J. Silk,et al.  Signatures of clumpy dark matter in the global 21 cm background signal , 2008, 0808.0881.

[255]  L. Giani,et al.  An Introduction to Particle Dark Matter , 2017, Universe.

[256]  D. Hooper,et al.  Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope , 2009, 0910.2998.

[257]  T. Yanagida,et al.  Moduli Dark Matter and the Search for Its Decay Line using Suzaku X-Ray Telescope , 2012, 1209.6403.

[258]  C. Argüelles,et al.  Dark Matter Annihilation to Neutrinos: An Updated, Consistent & Compelling Compendium of Constraints , 2019 .

[259]  C. Pérez de los Heros,et al.  Limits on Kaluza–Klein dark matter annihilation in the Sun from recent IceCube results , 2019, The European Physical Journal C.

[260]  P. Nāth,et al.  Supersymmetric Dark Matter , 1995, hep-ph/9610460.

[261]  Astronomy,et al.  Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure , 2012, 1208.3025.

[262]  Douglas P. Finkbeiner,et al.  A theory of dark matter , 2008, 0810.0713.

[263]  A. A. Smagina,et al.  A search for neutrino signal from dark matter annihilation in the center of the Milky Way with Baikal NT200 , 2015, 1512.01198.

[264]  S. Digel,et al.  EGRET Observations of the Diffuse Gamma-Ray Emission from the Galactic Plane , 1997 .

[265]  F. Gargano,et al.  Search for dark matter cosmic-ray electrons and positrons from the Sun with the Fermi Large Area Telescope , 2019, 1912.09373.

[266]  India.,et al.  Constraining dark matter lifetime with a deep gamma-ray survey of the Perseus galaxy cluster with MAGIC , 2018, Physics of the Dark Universe.

[267]  Sascha Caron,et al.  Implications of the Fermi-LAT Pass 8 Galactic Center excess on supersymmetric dark matter , 2017, 1709.10429.

[268]  W. Press,et al.  Capture by the sun of a galactic population of weakly interacting massive particles , 1985 .

[269]  A. Strong,et al.  PRODUCTION AND PROPAGATION OF COSMIC-RAY POSITRONS AND ELECTRONS , 1998 .

[270]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[271]  L. Oakes,et al.  Searches for gamma-ray lines and ‘pure WIMP’ spectra from Dark Matter annihilations in dwarf galaxies with H.E.S.S. , 2018, Journal of Cosmology and Astroparticle Physics.

[272]  Cosmic Rays from Dark Matter Annihilation and Big-Bang Nucleosynthesis(16th YKIS Conference Progress in Particle Physics 2008) , 2009, 0901.3582.

[273]  S. Khatibi,et al.  Multi-component dark matter in a non-Abelian dark sector , 2019, Physical Review D.

[274]  R. Catena,et al.  New constraints on inelastic dark matter from IceCube , 2018, Journal of Cosmology and Astroparticle Physics.

[275]  J. Khoury Alternative to particle dark matter , 2014, 1409.0012.

[276]  Impacts of dark matter particle annihilation on recombination and the anisotropies of the cosmic microwave background , 2006, astro-ph/0603425.

[277]  S. Ando,et al.  Halo Substructure Boosts to the Signatures of Dark Matter Annihilation , 2019, Galaxies.

[278]  T. Plehn,et al.  Yet Another Introduction to Dark Matter , 2017, Lecture Notes in Physics.

[279]  Yong-chao Zhang,et al.  Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube , 2016, 1606.04517.

[280]  G. Bertone,et al.  History of dark matter , 2016, Reviews of Modern Physics.

[281]  To Appear in ApJ letters Preprint typeset using L ATEX style emulateapj v. 04/03/99 DARK MATTER SCALING RELATIONS , 2000 .