Field emission enhancement from patterned gallium nitride nanowires

Patterned gallium nitride nanowires have been grown on n-Si(100) substrates by pulsed laser ablation. The nanowires are patterned using a physical mask, resulting in regions of nanowire growth of different density. These gallium nitride nanowires are single-crystalline with hexagonal wurzite structures. The electrical transport measurements of individual GaN nanowires show near-linear current–voltage characteristics. The estimated electron densities of these individual GaN nanowires range from 1.8–6.8 × 1018 cm−3. The field emission characteristics of these patterned gallium nitride nanowires show a turn-on field of 8.4 V µm−1 to achieve a current density of 0.01 mA cm−2 and an enhanced field emission current density as high as 0.96 mA cm−2 at an applied field of 10.8 V µm−1. The field emission results indicate that, besides crystalline quality as well as the low electron affinity of gallium nitride, density difference in the nanowires growth greatly enhances their field emission properties by reducing the screening between nanowires.

[1]  I. Rusakova,et al.  Field emission properties of GaN films on Si(111) , 1998 .

[2]  John T. L. Thong,et al.  Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films , 2004 .

[3]  J. Bernholc,et al.  Negative) Electron Affinity of AlN and AlGaN Alloys , 1995 .

[4]  J. Pankove,et al.  Photoemission from GaN , 1974 .

[5]  Michael E. Hoenk,et al.  High-current-density field emitters based on arrays of carbon nanotube bundles , 2005 .

[6]  R. Davis,et al.  Electron emission characteristics of GaN pyramid arrays grown via organometallic vapor phase epitaxy , 1998 .

[7]  K. Hiramatsu,et al.  Formation of GaN Self-Organized Nanotips by Reactive Ion Etching , 2001 .

[8]  T. Sugino,et al.  Field emission from GaN surfaces roughened by hydrogen plasma treatment , 2001 .

[9]  Growth of GaN nanowires on Si substrate using Ni catalyst in vertical chemical vapor deposition reactor , 2003 .

[10]  J. Robertson,et al.  The effect of film resistance on electron field emission from amorphous carbon films , 2001 .

[11]  Charles M. Lieber,et al.  Gallium Nitride Nanowire Nanodevices , 2002 .

[12]  T. W. Kang,et al.  Field emission displays of wide-bandgap gallium nitride nanorod arrays grown by hydride vapor phase epitaxy , 2003 .

[13]  Gyu-Chul Yi,et al.  Optical and field emission properties of thin single-crystalline GaN nanowires. , 2005, The journal of physical chemistry. B.

[14]  Xiangfeng Duan,et al.  Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires , 2000 .

[15]  H. Pépin,et al.  Structural and electrical characteristics of epitaxial GaN thin films grown using pulsed laser deposition assisted by an atomic nitrogen source , 2001 .

[16]  E. W. Plummer,et al.  Field Emission Energy Distribution (FEED) , 1973 .

[17]  K. H. Chen,et al.  Catalytic growth and characterization of gallium nitride nanowires. , 2001, Journal of the American Chemical Society.

[18]  Klaus Kern,et al.  Patterned Films of Nanotubes Using Microcontact Printing of Catalysts , 1999 .

[19]  Y. Bando,et al.  Quasi-aligned single-crystalline GaN nanowire arrays , 2005 .

[20]  J. Shaw,et al.  Graded electron affinity electron source , 1996 .

[21]  Y. Bando,et al.  Needlelike bicrystalline GaN nanowires with excellent field emission properties. , 2005, The journal of physical chemistry. B.