Modeling of the surface tension of pure components and mixtures using the density gradient theory combined with a theoretically derived influence parameter correlation

In this work surface tensions are calculated by combining the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) with the Density Gradient Theory of inhomogeneous fluid interfaces. Important parameters in the density gradient theory are the so-called influence parameters. A correlation is developed to estimate these influence parameters using their theoretical definition as a starting point. It is shown that the developed correlation in combination with the density gradient theory gives good predictions of surface tensions for pure components as well as binary and ternary mixtures with hydrocarbons.

[1]  Gabriele Sadowski,et al.  Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules , 2001 .

[2]  J. J. Jasper,et al.  The Surface Tension of Pure Liquid Compounds , 1972 .

[3]  A. Graciaa,et al.  Modeling of the Surface Tension of Multicomponent Mixtures with the Gradient Theory of Fluid Interfaces , 2005 .

[4]  E. A. Guggenheim The Principle of Corresponding States , 1945 .

[5]  Joachim Gross,et al.  Modeling Polymer Systems Using the Perturbed-Chain Statistical Associating Fluid Theory Equation of State , 2002 .

[6]  Richart Vázquez-Román,et al.  Vapor-liquid equilibria of nitrogen-hydrocarbon systems using the PC-SAFT equation of state , 2004 .

[7]  I. Marrucho,et al.  Modeling vapor-liquid interfaces with the gradient theory in combination with the CPA equation of state , 2005 .

[8]  J. Gross,et al.  Modeling Copolymer Systems Using the Perturbed-Chain SAFT Equation of State , 2003 .

[9]  Walter G. Chapman,et al.  Phase equilibrium modeling of mixtures of long-chain and short-chain alkanes using Peng–Robinson and SAFT , 2003 .

[10]  Anjushri S. Kurup,et al.  PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior , 2012 .

[11]  B. Lu,et al.  Vapor-Liquid equilibriums of binary systems containing n-hexane, cyclohexane, and benzene at low temperatures , 1973 .

[12]  C. Miqueu,et al.  Modelling of the surface tension of binary and ternary mixtures with the gradient theory of fluid interfaces , 2004 .

[13]  D. Fu,et al.  Investigation of the surface tension of methane and n-alkane mixtures by perturbed-chain statistical associating fluid theory combined with density-gradient theory , 2009 .

[14]  I. Marrucho,et al.  Surface Tension of Decane Binary and Ternary Mixtures with Eicosane, Docosane, and Tetracosane , 2005 .

[15]  K. Ridgway,et al.  Physical properties of the ternary system benzene-cyclohexane-hexane , 1967 .

[16]  M. Michelsen,et al.  Applications of the simplified perturbed-chain SAFT equation of state using an extended parameter table , 2006 .

[17]  Phase and Interfacial Tension Behavior of Certain Model Gas Condensates: Measurements and Modeling , 2003 .

[18]  Yiping Tang,et al.  Direct calculation of radial distribution function for hard‐sphere chains , 1996 .

[19]  Walter G Chapman,et al.  Gas solubility in hydrocarbons—a SAFT-based approach , 2003 .

[20]  Joachim Gross,et al.  A density functional theory for vapor-liquid interfaces using the PCP-SAFT equation of state. , 2009, The Journal of chemical physics.

[21]  T. N. Smith,et al.  Interfacial tension and spreading coefficient under reservoir conditions , 1998 .

[22]  D. Macleod On a relation between surface tension and density , 1923 .

[23]  G. Hirasaki,et al.  Modeling Asphaltene Phase Behavior in Crude Oil Systems Using the Perturbed Chain Form of the Statistical Associating Fluid Theory (PC-SAFT) Equation of State† , 2009 .

[24]  Christopher M. A. Parlett,et al.  Reports of meetings , 1967 .

[25]  G. Hirasaki,et al.  Prediction of Asphaltene Instability under Gas Injection with the PC-SAFT Equation of State† , 2005 .

[26]  L. E. Scriven,et al.  Molecular theory of fluid interfaces , 1976 .

[27]  R. Evans The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids , 1979 .

[28]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .