A Universal Representation for Quantum Commuting Correlations

We explicitly construct an Archimedean order unit space whose state space is affinely isomorphic to the set of quantum commuting correlations. Our construction only requires fundamental techniques from the theory of order unit spaces and operator systems. Our main results are achieved by characterizing when a finite set of positive contractions in an Archimedean order unit space can be realized as a set of projections on a Hilbert space.

[1]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[2]  A. Winter,et al.  Perfect Strategies for Non-Local Games , 2018, Mathematical Physics, Analysis and Geometry.

[3]  Mark Tomforde,et al.  Vector Spaces with an Order Unit , 2007, 0712.2613.

[4]  Narutaka Ozawa,et al.  About the Connes embedding conjecture , 2013 .

[5]  A. Connes,et al.  Classification of Injective Factors Cases II 1 , II ∞ , III λ , λ 1 , 1976 .

[6]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[7]  M. Hamana Injective Envelopes of Operator Systems , 1979 .

[9]  M. Junge,et al.  Connes' embedding problem and Tsirelson's problem , 2010, 1008.1142.

[10]  William Slofstra,et al.  The membership problem for constant-sized quantum correlations is undecidable , 2021, ArXiv.

[11]  V. Paulsen,et al.  Tensor products of operator systems , 2009, 0910.2210.

[12]  The Krein-Milman theorem in operator convexity , 1999 .

[13]  William Slofstra,et al.  THE SET OF QUANTUM CORRELATIONS IS NOT CLOSED , 2017, Forum of Mathematics, Pi.

[14]  Koon Tong Goh,et al.  Geometry of the set of quantum correlations , 2017, 1710.05892.

[15]  Richard V. Kadison,et al.  A representation theory for commutative topological algebra , 1951 .

[16]  Edward G. Effros,et al.  Injectivity and operator spaces , 1977 .

[17]  T. Fritz TSIRELSON'S PROBLEM AND KIRCHBERG'S CONJECTURE , 2010, 1008.1168.

[18]  V. Paulsen,et al.  Operator system structures on ordered spaces , 2009, 0904.3783.