Detection of dominant nitrate processes in ecohydrological modeling with temporal parameter sensitivity analysis

[1]  Christian Wolter,et al.  Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates. , 2015, The Science of the total environment.

[2]  Nicola Fohrer,et al.  Dynamic Modelling of Land Use Change Impacts on Nitrate Loads in Rivers , 2015, Environmental Processes.

[3]  M. Glavan,et al.  Assessing the impacts of climate change on water quantity and quality modelling in small Slovenian Mediterranean catchment – lesson for policy and decision makers , 2015 .

[4]  M. Walter,et al.  Using a soil topographic index to distribute denitrification fluxes across a northeastern headwater catchment , 2015 .

[5]  N. Fohrer,et al.  Temporal parameter sensitivity guided verification of process dynamics , 2015 .

[6]  N. Fohrer,et al.  A multi‐storage groundwater concept for the SWAT model to emphasize nonlinear groundwater dynamics in lowland catchments , 2014 .

[7]  Ryan T. Bailey,et al.  Spatial and temporal variability of in-stream water quality parameter influence on dissolved oxygen and nitrate within a regional stream network , 2014 .

[8]  N. Fohrer,et al.  Smart low flow signature metrics for an improved overall performance evaluation of hydrological models , 2014 .

[9]  Jayanarayanan Sitaraman,et al.  Robust and efficient overset grid assembly for partitioned unstructured meshes , 2014, J. Comput. Phys..

[10]  N. Fohrer,et al.  How to improve the representation of hydrological processes in SWAT for a lowland catchment – temporal analysis of parameter sensitivity and model performance , 2014 .

[11]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[12]  N. Fohrer,et al.  Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model. , 2014, Journal of environmental quality.

[13]  Nicola Fohrer,et al.  The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport , 2015, Regional Environmental Change.

[14]  Martin Volk,et al.  Land use change in a 200‐year period and its effect on blue and green water flow in two Slovenian Mediterranean catchments—lessons for the future , 2013 .

[15]  Prasanna H. Gowda,et al.  Modeling the impact of nitrogen fertilizer application and tile drain configuration on nitrate leaching using SWAT , 2013 .

[16]  Martin Volk,et al.  The impact of Best Management Practices on simulated streamflow and sediment load in a Central Brazilian catchment. , 2013, Journal of environmental management.

[17]  Chantal Gascuel-Odoux,et al.  Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study , 2013 .

[18]  Youpeng Xu,et al.  Hydrological Simulation by SWAT Model with Fixed and Varied Parameterization Approaches Under Land Use Change , 2013, Water Resources Management.

[19]  Patrick M. Reed,et al.  Time‐varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior , 2013 .

[20]  D. Corwin A young scientist to watch. , 2013, Journal of environmental quality.

[21]  Nicola Fohrer,et al.  Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany , 2012 .

[22]  Hoshin Vijai Gupta,et al.  Multiple-criteria calibration of a distributed watershed model using spatial regularization and response signatures , 2012 .

[23]  F. Hattermann,et al.  Precipitation or evapotranspiration? Bayesian analysis of potential error sources in the simulation of sub-basin discharges in the Czech Elbe River basin , 2012, Regional Environmental Change.

[24]  Denis Ruelland,et al.  Assessing impacts of alternative land use and agricultural practices on nitrate pollution at the catchment scale , 2011 .

[25]  Jeffrey G. Arnold,et al.  Soil and Water Assessment Tool Theoretical Documentation Version 2009 , 2011 .

[26]  Erwin Zehe,et al.  Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity , 2011 .

[27]  Erwin Zehe,et al.  Temporal dynamics of model parameter sensitivity for computationally expensive models with the Fourier amplitude sensitivity test , 2011 .

[28]  Michael Rode,et al.  New challenges in integrated water quality modelling , 2010 .

[29]  Patrick Durand,et al.  The role of climate on inter-annual variation in stream nitrate fluxes and concentrations. , 2010, The Science of the total environment.

[30]  Nicola Fohrer,et al.  Incorporating landscape depressions and tile drainages of a northern German lowland catchment into a semi‐distributed model , 2010 .

[31]  Karline Soetaert,et al.  Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME , 2010 .

[32]  Valentina Krysanova,et al.  From meso- to macro-scale dynamic water quality modelling for the assessment of land use change scenarios. , 2009 .

[33]  Erwin Zehe,et al.  Analysing the temporal dynamics of model performance for hydrological models , 2008 .

[34]  N. Fohrer,et al.  Modelling hydrological processes in mesoscale lowland river basins with SWAT—capabilities and challenges , 2008 .

[35]  Hoshin Vijai Gupta,et al.  A process‐based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model , 2008 .

[36]  Yuqiong Liu,et al.  Reconciling theory with observations: elements of a diagnostic approach to model evaluation , 2008 .

[37]  Florian Pappenberger,et al.  Multi‐method global sensitivity analysis (MMGSA) for modelling floodplain hydrological processes , 2008 .

[38]  Philip M. Haygarth,et al.  Stream water chemistry and quality along an upland–lowland rural land-use continuum, south west England , 2008 .

[39]  Michael Rode,et al.  Multi-objective calibration of a river water quality model—Information content of calibration data , 2007 .

[40]  Jeffrey J. McDonnell,et al.  The effects of land use on stream nitrate dynamics , 2007 .

[41]  A. Wade,et al.  Towards an improved understanding of the nitrate dynamics in lowland, permeable river-systems: Applications of INCA-N , 2006 .

[42]  Stefano Tarantola,et al.  Sensitivity analysis practices: Strategies for model-based inference , 2006, Reliab. Eng. Syst. Saf..

[43]  R. Srinivasan,et al.  A global sensitivity analysis tool for the parameters of multi-variable catchment models , 2006 .

[44]  P. Krause,et al.  COMPARISON OF DIFFERENT EFFICIENCY CRITERIA FOR HYDROLOGICAL MODEL ASSESSMENT , 2005 .

[45]  Modelling of point and non-point source pollution of nitrate with SWAT in the river Dill, Germany , 2005 .

[46]  S. Uhlenbrook,et al.  Sensitivity analyses of a distributed catchment model to verify the model structure , 2005 .

[47]  J. Arnold,et al.  SWAT2000: current capabilities and research opportunities in applied watershed modelling , 2005 .

[48]  P. Whitehead,et al.  Calibration and sensitivity analysis of a river water quality model under unsteady flow conditions , 2003 .

[49]  Neil McIntyre,et al.  Towards reduced uncertainty in conceptual rainfall‐runoff modelling: dynamic identifiability analysis , 2003 .

[50]  H. Oesterle Reconstruction of daily global radiation for past years for use in agricultural models , 2001 .

[51]  Berit Arheimer,et al.  Nitrogen and phosphorus concentrations from agricultural catchments—influence of spatial and temporal variables , 2000 .

[52]  A. Saltelli,et al.  An alternative way to compute Fourier amplitude sensitivity test (FAST) , 1998 .

[53]  John R. Williams,et al.  LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT 1 , 1998 .

[54]  K.,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[55]  K. Shuler,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations , 1975 .

[56]  C. Fortuin,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .

[57]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[58]  E. Schlichting Die Böden Schleswig-Holsteins , 1952 .