Stability analysis for implicit second order finite difference schemes

Recent applications of iterative learning control and repetitive processes lead to implicit second order finite difference schemes which require practical stability testing. A von Neumann type stability analysis is employed to reduce the problem to a second order polynomial. The conditions under which its zeros lie within the unit circle can be recast by application of the bilinear transformation. Then the problem is reduced to a test for a Hurwitz polynomial. Its coefficients depend not only on the spatial frequency but also on parameters of the initial problem like step sizes in time and space. The admissible ranges of these parameters follow finally from simple inequalities. The method is demonstrated by examples.

[1]  Peter Steffen,et al.  Numerical iterative methods and repetitive processes , 2012, Multidimens. Syst. Signal Process..

[2]  N. Bose Implementation of a new stability test for two-dimensional filters , 1977 .

[3]  Hans Wilhelm Schüßler Digitale Signalverarbeitung 1 , 1994 .

[4]  Thomas S. Huang,et al.  Two-Dimensional Digital Signal Processing I , 1981 .

[5]  Krzysztof Galkowski,et al.  Iterative learning control for spatio-temporal dynamics using Crank-Nicholson discretization , 2012, Multidimens. Syst. Signal Process..

[6]  T. Kaczorek Two-Dimensional Linear Systems , 1985 .

[7]  Wojciech Paszke,et al.  Analysis and synthesis of multidimensional system classes using linear matrix inequality methods , 2005 .

[8]  Krzysztof Galkowski,et al.  Control Systems Theory and Applications for Linear Repetitive Processes - Recent Progress and Open Research Questions , 2007 .

[9]  W. Marsden I and J , 2012 .

[10]  R. Rabenstein,et al.  Stability of two-step repetitive processes based on a matrix formulation , 2007, 2007 International Workshop on Multidimensional (nD) Systems.

[11]  E. Rogers,et al.  Stabilization of a class of uncertain "wave" discrete linear repetitive processes , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[12]  E. Süli,et al.  Numerical Solution of Partial Differential Equations , 2014 .

[13]  T. Meis,et al.  Numerische Behandlung partieller Differentialgleichungen , 1978 .

[14]  Brian D. O. Anderson,et al.  Stability test for two-dimensional recursive filters , 1973 .

[15]  Thomas S. Huang,et al.  Stability of two-dimensional recursive filters , 1972 .

[16]  S. Treitel,et al.  Stability and synthesis of two-dimensional recursive filters , 1972 .

[17]  H. Schussler,et al.  A stability theorem for discrete systems , 1976 .

[18]  E. Jury,et al.  Positivity and stability tests for multidimensional filters (discrete-continuous) , 1974 .

[19]  A. R. Mitchell,et al.  The Finite Difference Method in Partial Differential Equations , 1980 .

[20]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[21]  N. Bose Multidimensional Systems Theory , 1985 .

[22]  Kamal Premaratne,et al.  Stability determination of two-dimensional discrete-time systems , 1993, Multidimens. Syst. Signal Process..