A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS
暂无分享,去创建一个
Hendrik Speleers | Alessandro Reali | Thomas J. R. Hughes | Josef Kiendl | Jarkko Niiranen | Carlo Lovadina | L. Beirão da Veiga | T. Hughes | A. Reali | H. Speleers | C. Lovadina | J. Niiranen | J. Kiendl | L. Veiga
[1] H. Saunders,et al. Finite element procedures in engineering analysis , 1982 .
[2] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[3] M. Fortin,et al. ERROR ANALYSIS OF MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES , 1991 .
[4] Hendrik Speleers,et al. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .
[5] J. Lions,et al. Inequalities in mechanics and physics , 1976 .
[6] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[7] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[8] C. Chinosi,et al. Numerical analysis of some mixed finite element methods for Reissner-Mindlin plates , 1995 .
[9] Dominique Chapelle,et al. An optimal low-order locking-free finite element method for Reissner-Mindlin plates , 1998 .
[10] Fehmi Cirak,et al. Shear‐flexible subdivision shells , 2012 .
[11] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[12] F. Auricchio,et al. Single-variable formulations and isogeometric discretizations for shear deformable beams , 2015 .
[13] C. Ross,et al. Advanced finite element methods , 1998 .
[14] Hendrik Speleers,et al. From NURBS to NURPS geometries , 2013 .
[15] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[16] D. Arnold,et al. A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .
[17] Hendrik Speleers,et al. Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .
[18] R. Echter,et al. A hierarchic family of isogeometric shell finite elements , 2013 .
[19] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[20] Thomas J. R. Hughes,et al. Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .
[21] Hendrik Speleers,et al. Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..
[22] Juhani Pitkäranta,et al. Boundary subspaces for the finite element method with Lagrange multipliers , 1979 .
[23] Giancarlo Sangalli,et al. Anisotropic NURBS approximation in isogeometric analysis , 2012 .
[24] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[25] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[26] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[27] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[28] S. Agmon. Lectures on Elliptic Boundary Value Problems , 1965 .
[29] L. Beirao da Veiga,et al. An isogeometric method for the Reissner-Mindlin plate bending problem , 2011, 1106.4436.
[30] Rüdiger Verfürth,et al. Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .
[31] Rolf Stenberg,et al. A Refined Error Analysis of MITC Plate Elements , 2006 .