A mesh-dependent model for applying dynamic contact angles to VOF simulations

Typical VOF algorithms rely on an implicit slip that scales with mesh refinement, to allow contact lines to move along no-slip boundaries. As a result, solutions of contact line phenomena vary continuously with mesh spacing; this paper presents examples of that variation. A mesh-dependent dynamic contact angle model is then presented, that is based on fundamental hydrodynamics and serves as a more appropriate boundary condition at a moving contact line. This new boundary condition eliminates the stress singularity at the contact line; the resulting problem is thus well-posed and yields solutions that converge with mesh refinement. Numerical results are presented of a solid plate withdrawing from a fluid pool, and of spontaneous droplet spread at small capillary and Reynolds numbers.

[1]  S. Afkhami,et al.  Height functions for applying contact angles to 2D VOF simulations , 2008 .

[2]  L. M. Hocking A moving fluid interface. Part 2. The removal of the force singularity by a slip flow , 1977, Journal of Fluid Mechanics.

[3]  L. M. Hocking SLIDING AND SPREADING OF THIN TWO-DIMENSIONAL DROPS , 1981 .

[4]  P. Spelt A level-set approach for simulations of flows with multiple moving contact lines with hysteresis , 2005 .

[5]  Sandesh Somalinga,et al.  Numerical investigation of boundary conditions for moving contact line problems , 2000 .

[6]  J. Li,et al.  Numerical simulation of moving contact line problems using a volume-of-fluid method , 2001 .

[7]  P. A. Sackinger,et al.  A Finite Element Method for Free-Surface Flows of Incompressible Fluids in Three Dimensions, Part II: Dynamic Wetting Lines , 2000 .

[8]  R. G. Cox The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow , 1986, Journal of Fluid Mechanics.

[9]  S. H. Davis,et al.  On the motion of a fluid-fluid interface along a solid surface , 1974, Journal of Fluid Mechanics.

[10]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[11]  E. B. Dussan,et al.  LIQUIDS ON SOLID SURFACES: STATIC AND DYNAMIC CONTACT LINES , 1979 .

[12]  Dimos Poulikakos,et al.  Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling , 1995 .

[13]  J. H. Snoeijer,et al.  Relaxation of a dewetting contact line. Part 2. Experiments , 2007, Journal of Fluid Mechanics.

[14]  M. Walkley,et al.  Finite element simulation of three‐dimensional free‐surface flow problems with dynamic contact lines , 2005 .

[15]  David Jacqmin,et al.  Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.

[16]  Jens Eggers,et al.  Existence of receding and advancing contact lines , 2005 .

[17]  Enrique Rame,et al.  On an approximate model for the shape of a liquid–air interface receding in a capillary tube , 1997, Journal of Fluid Mechanics.

[18]  A. K. Chesters,et al.  Numerical investigation of the dynamic influence of the contact line region on the macroscopic meniscus shape , 1996, Journal of Fluid Mechanics.

[19]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[20]  S. Herminghaus,et al.  Wetting: Statics and dynamics , 1997 .

[21]  L. W. Schwartz,et al.  Effective slip in numerical calculations of moving-contact-line problems , 1992 .

[22]  T. Blake,et al.  Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle , 1999 .

[23]  P. Joos,et al.  The kinetics of wetting: the dynamic contact angle , 1989 .

[24]  Jacco H. Snoeijer Free-surface flows with large slopes: Beyond lubrication theory , 2006 .

[25]  Richard L. Hoffman,et al.  A study of the advancing interface , 1983 .

[26]  L. Tanner,et al.  The spreading of silicone oil drops on horizontal surfaces , 1979 .

[27]  J. H. Snoeijer,et al.  Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation , 2007, Journal of Fluid Mechanics.

[28]  Y. Shikhmurzaev Singularities at the moving contact line. Mathematical, physical and computational aspects , 2006 .

[29]  Patrick Patrick Anderson,et al.  Diffuse-interface modelling of droplet impact , 2007, Journal of Fluid Mechanics.

[30]  Hang Ding,et al.  Wetting condition in diffuse interface simulations of contact line motion. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  L. Scriven,et al.  Hydrodynamic Model of Steady Movement of a Solid / Liquid / Fluid Contact Line , 1971 .

[32]  Chun Huh,et al.  The steady movement of a liquid meniscus in a capillary tube , 1977, Journal of Fluid Mechanics.

[33]  D. Rothman,et al.  Scaling of dynamic contact angles in a lattice-Boltzmann model. , 2007, Physical review letters.

[34]  S. Jakirlic,et al.  Dynamic contact angle of spreading droplets: Experiments and simulations , 2005 .

[35]  Zhou,et al.  Immiscible-fluid displacement: Contact-line dynamics and the velocity-dependent capillary pressure. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[36]  P. Gennes Wetting: statics and dynamics , 1985 .

[37]  George M. Homsy,et al.  Stability of Newtonian and viscoelastic dynamic contact lines , 1996 .

[38]  James Lowndes,et al.  The numerical simulation of the steady movement of a fluid meniscus in a capillary tube , 1980, Journal of Fluid Mechanics.

[39]  J. C. Slattery,et al.  Correlation for dynamic contact angle , 1979 .

[40]  R. G. Cox The dynamics of the spreading of liquids on a solid surface. Part 2. Surfactants , 1986, Journal of Fluid Mechanics.

[41]  John Billingham,et al.  On a model for the motion of a contact line on a smooth solid surface , 2006, European Journal of Applied Mathematics.

[42]  R. Hoffman A study of the advancing interface. I. Interface shape in liquid—gas systems , 1975 .

[43]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[44]  Enrique Rame,et al.  On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation , 1991, Journal of Fluid Mechanics.

[45]  O. Voinov Hydrodynamics of wetting , 1976 .

[46]  Ponisseril Somasundaran,et al.  ENCYCLOPEDIA OF Surface and Colloid Science , 2006 .

[47]  S. Chandra,et al.  On a three-dimensional volume tracking model of droplet impact , 1999 .

[48]  Oleg Weinstein,et al.  Scale Dependence of Contact Line Computations , 2006 .