Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation
暂无分享,去创建一个
Zhangxin Chen | Jian Li | Wentao Cai | Zhangxin Chen | Jian Li | Wentao Cai
[1] Y. Tourigny,et al. Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .
[2] Sergey Leble,et al. On convergence and stability of a numerical scheme of Coupled Nonlinear Schrödinger Equations , 2008, Comput. Math. Appl..
[3] Weiwei Sun,et al. Error Estimates of Splitting Galerkin Methods for Heat and Sweat Transport in Textile Materials , 2013, SIAM J. Numer. Anal..
[4] Yinnian He. Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .
[5] Weiwei Sun,et al. Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..
[7] Buyang Li. Mathematical modelling, analysis and computation of some complex and nonlinear flow problems , 2012 .
[8] Ming-Liang Wang,et al. The (G'/G)-expansion method and travelling wave solutions for a higher-order nonlinear schrödinger equation , 2009, Appl. Math. Comput..
[9] Anjan Biswas,et al. Introduction to non-Kerr Law Optical Solitons , 2006 .
[10] Huiqun Zhang,et al. Extended Jacobi elliptic function expansion method and its applications , 2007 .
[11] Buyang Li,et al. Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.
[12] Georgios E. Zouraris,et al. On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation , 2001 .
[13] Weiwei Sun,et al. Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..
[14] G. Akrivis,et al. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .
[15] J. M. Sanz-Serna,et al. Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .
[16] Weiwei Sun,et al. Optimal Error Estimates of Linearized Crank-Nicolson Galerkin FEMs for the Time-Dependent Ginzburg-Landau Equations in Superconductivity , 2014, SIAM J. Numer. Anal..
[17] Alan C. Newell,et al. Solitons in mathematics and physics , 1987 .
[18] Michel C. Delfour,et al. Finite-difference solutions of a non-linear Schrödinger equation , 1981 .
[19] M. Feit,et al. Solution of the Schrödinger equation by a spectral method , 1982 .
[20] Yunqing Huang,et al. An Alternating Crank--Nicolson Method for Decoupling the Ginzburg--Landau Equations , 1998 .
[21] R. Rannacher,et al. Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .
[22] Abdelhalim Ebaid,et al. New types of exact solutions for nonlinear Schrödinger equation with cubic nonlinearity , 2011, J. Comput. Appl. Math..
[23] Graeme Fairweather,et al. Three level Galerkin methods for parabolic equations , 1974 .
[24] Jian Li,et al. A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier-Stokes equations , 2010, J. Comput. Appl. Math..
[25] L. Debnath. Solitons and the Inverse Scattering Transform , 2012 .
[26] Weizhu Bao,et al. Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..
[27] Yinnian He,et al. The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data , 2008, Math. Comput..