Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation

In this paper, we focus on a linearized backward Euler scheme with a Galerkin finite element approximation for the time-dependent nonlinear Schrödinger equation. By splitting an error estimate into two parts, one from the spatial discretization and the other from the temporal discretization, we obtain unconditionally optimal error estimates of the fully-discrete backward Euler method for a generalized nonlinear Schrödinger equation. Numerical results are provided to support our theoretical analysis and efficiency of this method.

[1]  Y. Tourigny,et al.  Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .

[2]  Sergey Leble,et al.  On convergence and stability of a numerical scheme of Coupled Nonlinear Schrödinger Equations , 2008, Comput. Math. Appl..

[3]  Weiwei Sun,et al.  Error Estimates of Splitting Galerkin Methods for Heat and Sweat Transport in Textile Materials , 2013, SIAM J. Numer. Anal..

[4]  Yinnian He Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .

[5]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[7]  Buyang Li Mathematical modelling, analysis and computation of some complex and nonlinear flow problems , 2012 .

[8]  Ming-Liang Wang,et al.  The (G'/G)-expansion method and travelling wave solutions for a higher-order nonlinear schrödinger equation , 2009, Appl. Math. Comput..

[9]  Anjan Biswas,et al.  Introduction to non-Kerr Law Optical Solitons , 2006 .

[10]  Huiqun Zhang,et al.  Extended Jacobi elliptic function expansion method and its applications , 2007 .

[11]  Buyang Li,et al.  Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.

[12]  Georgios E. Zouraris,et al.  On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation , 2001 .

[13]  Weiwei Sun,et al.  Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..

[14]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[15]  J. M. Sanz-Serna,et al.  Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .

[16]  Weiwei Sun,et al.  Optimal Error Estimates of Linearized Crank-Nicolson Galerkin FEMs for the Time-Dependent Ginzburg-Landau Equations in Superconductivity , 2014, SIAM J. Numer. Anal..

[17]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[18]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[19]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[20]  Yunqing Huang,et al.  An Alternating Crank--Nicolson Method for Decoupling the Ginzburg--Landau Equations , 1998 .

[21]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[22]  Abdelhalim Ebaid,et al.  New types of exact solutions for nonlinear Schrödinger equation with cubic nonlinearity , 2011, J. Comput. Appl. Math..

[23]  Graeme Fairweather,et al.  Three level Galerkin methods for parabolic equations , 1974 .

[24]  Jian Li,et al.  A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier-Stokes equations , 2010, J. Comput. Appl. Math..

[25]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[26]  Weizhu Bao,et al.  Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..

[27]  Yinnian He,et al.  The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data , 2008, Math. Comput..