Volumetric properties of non-aqueous binary mixture of diethanolamine (DEA) and dimethylformamide (DMF)

[1]  S. Garg,et al.  Experimental and correlation of viscosity and refractive index of non-aqueous system of diethanolamine (DEA) and dimethylformamide (DMF) for CO2 capture , 2018 .

[2]  Sintayehu Mekuria Hailegiorgis,et al.  High-pressure absorption study of CO2 in aqueous N-methyldiethanolamine (MDEA) and MDEA-piperazine (PZ)-1-butyl-3-methylimidazolium trifluoromethanesulfonate [bmim][OTf] hybrid solvents , 2018 .

[3]  Saeed Akbari,et al.  Comparison of neuro-fuzzy network and response surface methodology pertaining to the viscosity of polymer solutions , 2018, Journal of Petroleum Exploration and Production Technology.

[4]  Sintayehu Mekuria Hailegiorgis,et al.  Experimental and prediction of volumetric properties of aqueous solution of (allyltriphenylPhosphonium bromide—Triethylene glycol) deep eutectic solvents , 2017 .

[5]  Azmi Mohd Shariff,et al.  Investigation of various process parameters on the solubility of carbon dioxide in phosphonium-based deep eutectic solvents and their aqueous mixtures: Experimental and modeling , 2017 .

[6]  Sintayehu Mekuria Hailegiorgis,et al.  CO2 capture with the help of Phosphonium-based deep eutectic solvents , 2017 .

[7]  Azmi Mohd Shariff,et al.  Measurement and correlation of physicochemical properties of phosphonium-based deep eutectic solvents at several temperatures (293.15 K–343.15 K) for CO2 capture , 2017 .

[8]  M. S. Shaikh,et al.  Measurement and prediction of physical properties of aqueous sodium salt of L-phenylalanine , 2017 .

[9]  S. Garg,et al.  Physical properties of aqueous blend of diethanolamine and sarcosine: experimental and correlation study , 2017, Chemical Papers.

[10]  S. Garg,et al.  Experimental data, thermodynamic and neural network modeling of CO2 solubility in aqueous sodium salt of l-phenylalanine , 2017 .

[11]  Sintayehu Mekuria Hailegiorgis,et al.  Thermophysical properties of aqueous N-methyldiethanolamine (MDEA) and ionic liquids 1-butyl-3-methylimidazolium trifluoromethanesulfonate [bmim][OTf], 1-butyl-3-methylimidazolium acetate [bmim][Ac] hybrid solvents for CO2 capture , 2017 .

[12]  Sintayehu Mekuria Hailegiorgis,et al.  Thermophysical properties of concentrated aqueous solution of N-methyldiethanolamine (MDEA), piperazine (PZ), and ionic liquids hybrid solvent for CO2 capture , 2017 .

[13]  S. Garg,et al.  Experimental and correlation study of selected physical properties of aqueous blends of potassium sarcosinate and 2-piperidineethanol as a solvent for CO2 capture , 2017 .

[14]  M. S. Shaikh,et al.  Physical properties of aqueous solutions of potassium l-prolinate from 298.15 to 343.15 K at atmospheric pressure , 2017, Chemical Papers.

[15]  M. S. Shaikh,et al.  Selected physical properties of aqueous potassium salt of l-phenylalanine as a solvent for CO2 capture , 2016 .

[16]  M. S. Shaikh,et al.  VLE of CO2 in aqueous potassium salt of L-phenylalanine: Experimental data and modeling using modified Kent-Eisenberg model , 2016 .

[17]  M. S. Shaikh,et al.  Physical properties of aqueous sodium salt solution of α-methylalanine (Na-AMALA) , 2016 .

[18]  M. S. Shaikh,et al.  High-pressure Solubility of Carbon Dioxide in Aqueous Sodium L- Prolinate Solution☆ , 2016 .

[19]  M. S. Shaikh,et al.  Measurement and prediction of physical properties of aqueous sodium l-prolinate and piperazine as a solvent blend for CO2 removal , 2015 .

[20]  Mert Atilhan,et al.  Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications , 2015 .

[21]  João Gomes,et al.  Choosing amine-based absorbents for CO2 capture , 2015, Environmental technology.

[22]  Abulhassan Ali,et al.  Cryogenic carbon dioxide separation from natural gas: a review based on conventional and novel emerging technologies , 2014 .

[23]  F. Barzagli,et al.  Novel non-aqueous amine solvents for reversible CO2 capture , 2014 .

[24]  M. Peruzzini,et al.  Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP) , 2013 .

[25]  F. Barzagli,et al.  Efficient CO2 capture by non-aqueous 2-amino-2-methyl-1-propanol (AMP) and low temperature solvent regeneration , 2013 .

[26]  Yaser Khojasteh Salkuyeh,et al.  Reduction of CO2 capture plant energy requirement by selecting a suitable solvent and analyzing the operating parameters , 2013 .

[27]  Monoj Kumar Mondal,et al.  Progress and trends in CO2 capture/separation technologies: A review , 2012 .

[28]  Chih-Hung Huang,et al.  A Review of CO2 Capture by Absorption and Adsorption , 2012 .

[29]  M. Fakhree,et al.  Volumetric Properties of Glycerol Formal + Propylene Glycol Mixtures at Several Temperatures and Correlation with the Jouyban–Acree Model , 2012, Journal of Solution Chemistry.

[30]  Massimo Di Vaira,et al.  Improved solvent formulations for efficient CO₂ absorption and low-temperature desorption. , 2012, ChemSusChem.

[31]  S. Jeong,et al.  Absorption of CO2 into Aqueous Potassium Salt Solutions of l-Alanine and l-Proline , 2012 .

[32]  G. Maurer,et al.  An Experimental Investigation of the Solubility of CO2 in (N,N-Dimethylmethanamide + Water) , 2012 .

[33]  Hans Hasse,et al.  Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA , 2012 .

[34]  F. Martínez,et al.  Volumetric properties of some pharmaceutical binary mixtures at low temperatures and correlation with the Jouyban-Acree model , 2011 .

[35]  Hans Hasse,et al.  Pilot plant experiments for post combustion carbon dioxide capture by reactive absorption with novel solvents , 2011 .

[36]  F. Martínez,et al.  Volumetric properties of glycerol + water mixtures at several temperatures and correlation with the Jouyban-Acree model , 2011 .

[37]  Abass A. Olajire,et al.  CO2 capture and separation technologies for end-of-pipe applications – A review , 2010 .

[38]  A. Henni,et al.  High pressure solubility of carbon dioxide (CO2) in aqueous piperazine solutions , 2010 .

[39]  André Bardow,et al.  Continuous-Molecular Targeting for Integrated Solvent and Process Design , 2010 .

[40]  M. I. Mutalib,et al.  Thermophysical Properties of Aqueous Piperazine and Aqueous (N-Methyldiethanolamine + Piperazine) Solutions at Temperatures (298.15 to 338.15) K , 2009 .

[41]  Scott Morgan,et al.  Post-combustion capture R&D and pilot plant operation in Australia , 2009 .

[42]  Hans Hasse,et al.  Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents , 2009 .

[43]  Geert Versteeg,et al.  Kinetic study of CO2 with various amino acid salts in aqueous solution , 2009 .

[44]  J. Gibbins,et al.  Carbon Capture and Storage , 2008 .

[45]  Aloke Kumar Ghoshal,et al.  Theoretical studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC) , 2008 .

[46]  S. Kersten,et al.  Physiochemical Properties of Several Aqueous Potassium Amino Acid Salts , 2008 .

[47]  Dariush Mowla,et al.  Selectivity study of H2S and CO2 absorption from gaseous mixtures by MEA in packed beds , 2008 .

[48]  G. Iglesias-Silva,et al.  Densities and Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to 353.15) K , 2008 .

[49]  R. B. Slimane,et al.  Progress in carbon dioxide separation and capture: a review. , 2008, Journal of environmental sciences.

[50]  Amornvadee Veawab,et al.  Environmental impacts of absorption-based CO2 capture unit for post-combustion treatment of flue gas from coal-fired power plant , 2007 .

[51]  Hallvard F. Svendsen,et al.  Experimental validation of a rate-based model for CO2 capture using an AMP solution , 2007 .

[52]  Finn Andrew Tobiesen,et al.  Experimental validation of a rigorous absorber model for CO2 postcombustion capture , 2007 .

[53]  R. Steeneveldt,et al.  CO2 Capture and Storage: Closing the Knowing–Doing Gap , 2006 .

[54]  S. Bandyopadhyay,et al.  Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and monoethanolamine , 2006 .

[55]  R. Idem,et al.  Pilot Plant Studies of the CO2 Capture Performance of Aqueous MEA and Mixed MEA/MDEA Solvents at the University of Regina CO2 Capture Technology Development Plant and the Boundary Dam CO2 Capture Demonstration Plant , 2006 .

[56]  Geert Versteeg,et al.  Solubility of carbon dioxide in aqueous piperazine solutions , 2005 .

[57]  A. Jouyban,et al.  Mathematical representation of the density of liquid mixtures at various temperatures using Jouyban-Acree model , 2005 .

[58]  Jinwon Park,et al.  Physical Properties of Aqueous Sodium Glycinate Solution as an Absorbent for Carbon Dioxide Removal , 2005 .

[59]  A. Jouyban,et al.  Calculation of the viscosity of binary liquids at various temperatures using Jouyban-Acree model. , 2005, Chemical & pharmaceutical bulletin.

[60]  RajenderKumar Gupta,et al.  Oxy-fuel combustion technology for coal-fired power generation , 2005 .

[61]  Edward S Rubin,et al.  A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. , 2002, Environmental science & technology.

[62]  A. K. Biswas,et al.  Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions , 2001 .

[63]  D. Richon,et al.  Isothermal Vapor−Liquid Equilibria of the Carbon Dioxide (CO2)−N,N-Dimethylformamide (DMF) System at Temperatures from 293.95 K to 338.05 K and Pressures up to 12 MPa , 2001 .

[64]  H Herzog,et al.  Capturing greenhouse gases. , 2000, Scientific American.

[65]  J. Hanaee,et al.  A novel method for improvement of predictability of the CNIBS/R-K equation , 1997 .

[66]  Ming-Jer Lee,et al.  Density and viscosity for monoethanolamine + water, + ethanol, and + 2-propanol , 1995 .

[67]  L. Hepler,et al.  Measurement and prediction of the density of aqueous ternary mixtures of methyldiethanolamine and diethanolamine at temperatures from 25°c to 80°c , 1994 .

[68]  W. Acree MATHEMATICAL REPRESENTATION OF THERMODYNAMIC PROPERTIES: PART II. DERIVATION OF THE COMBINED NEARLY IDEAL BINARY SOLVENT(NIBS)/REDLICH-KISTER MATHEMATICAL REPRESENTATION FROM A TWO-BODY AND THREE-BODY INTERACTIONAL MIXING MODEL , 1992 .

[69]  Amyn S. Teja,et al.  Densities and viscosities of the ethanolamines , 1992 .

[70]  Axel Meisen,et al.  CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column , 1992 .

[71]  A. R. Thompson,et al.  Densities and Refractive Indices of Aqueous Monoethanolamine, Diethanolamine, Triethanolamine. , 1964 .