Derivative Free Surrogate Optimization for Mixed-Integer Nonlinear Black Box Problems in Engineering

Optimization problems based on black boxes arise in engineering applications every day. Such black boxes typically represent the simulated or experimentally obtained behavior of systems for which almost no internal, structural or analytical knowledge can be provided on a relevant level for the optimization's objective. These resulting non-relaxable mixed-integer nonlinear black box-based optimization problems cannot be carried out efficiently by today's optimization methods. This work provides a new general applicable derivative free optimization approach. The performance of this method will be demonstrated for several benchmark and real world problems from electrical engineering, environmental sciences, and robotics. It will be shown that huge improvements of the optimization's objectives can be achieved for all applications, simply by applying a reasonable number of black box evaluations.

[1]  Paul P. Wang,et al.  MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User's Guide , 1999 .

[2]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[3]  L. Watson,et al.  Genetic Algorithm for Mixed Integer Nonlinear Programming Problems Using Separate Constraint Approximations , 2003 .

[4]  A. Giunta,et al.  Use of data sampling, surrogate models, and numerical optimization in engineering design , 2002 .

[5]  D. McKinney,et al.  Approximate Mixed‐Integer Nonlinear Programming Methods for Optimal Aquifer Remediation Design , 1995 .

[6]  J. -F. M. Barthelemy,et al.  Approximation concepts for optimum structural design — a review , 1993 .

[7]  R. W. Mayne,et al.  Optimization With Discrete Variables Via Recursive Quadratic Programming: Part 1—Concepts and Definitions , 1989 .

[8]  I. Nowak Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming , 2005 .

[9]  Kalyanmoy Deb,et al.  Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence , 2001, EMO.

[10]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[11]  K. I. M. McKinnon,et al.  Convergence of the Nelder-Mead Simplex Method to a Nonstationary Point , 1998, SIAM J. Optim..

[12]  Chunlei Zhang,et al.  Notes on the convergence and applications of surrogate optimization , 2005 .

[13]  Charles Audet,et al.  Analysis of Generalized Pattern Searches , 2000, SIAM J. Optim..

[14]  Søren Nymand Lophaven,et al.  Aspects of the Matlab toolbox DACE , 2002 .

[15]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[16]  John W. Bandler,et al.  An Introduction to the Space Mapping Technique , 2001 .

[17]  Upmanu Lall,et al.  An optimization model for unconfined stratified aquifer systems , 1989 .

[18]  Natalia Alexandrov,et al.  Editorial—Multidisciplinary Design Optimization , 2005 .

[19]  T. Westerlund,et al.  An extended cutting plane method for solving convex MINLP problems , 1995 .

[20]  Virginia Torczon,et al.  Numerical Optimization Using Computer Experiments , 1997 .

[21]  M. Sasena,et al.  Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization , 2002 .

[22]  Mingguo Zhao,et al.  Gait Planning Of Quadruped Robot Based On Third-Order Spline Interpolation , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Tamara G. Kolda,et al.  Asynchronous Parallel Generating Set Search for Linearly Constrained Optimization , 2008, SIAM J. Sci. Comput..

[24]  J. D. Johannes,et al.  Systems Simulation: The Art and Science , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Jim Koehler,et al.  Estimating Functions Evaluated by Simulation: a Bayesian/Analytic Approach , 1997 .

[26]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[27]  J. C. Otto,et al.  Computer-Simulation Surrogates for Optimization: Application to Trapezoidal Ducts and Axisymmetric Bodies , 1995 .

[28]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[29]  Jerry Brown,et al.  Reduced Design Cycle Time and Improved Design Space Exploration , 2004 .

[30]  Christodoulos A. Floudas Generalized Benders Decomposition , 2009, Encyclopedia of Optimization.

[31]  Michael S. Eldred,et al.  Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .

[32]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[33]  Richard H. Crawford,et al.  Generic Sequential Sampling for Metamodel Approximations , 2003 .

[34]  Peter Stone,et al.  Policy gradient reinforcement learning for fast quadrupedal locomotion , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[35]  Philip E. Gill,et al.  Practical optimization , 1981 .

[36]  Klaus Schittkowski,et al.  A trust region SQP algorithm for mixed-integer nonlinear programming , 2007, Optim. Lett..

[37]  S. Koziel,et al.  Coarse and Surrogate Model Assessment for Engineering Design Optimization with Space Mapping , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[38]  Robert Michael Lewis,et al.  On the Local Convergence of Pattern Search , 2003, SIAM J. Optim..

[39]  Dick den Hertog,et al.  Collaborative Metamodeling: Coordinating Simulation-based Product Design , 2003, Concurr. Eng. Res. Appl..

[40]  Denis Fisseler,et al.  Learning in a High Dimensional Space: Fast Omnidirectional Quadrupedal Locomotion , 2006, RoboCup.

[41]  Oskar von Stryk,et al.  Efficient dynamic modeling, numerical optimal control and experimental results for various gaits of a quadruped robot , 2003 .

[42]  Jjm Koo Rijpkema,et al.  Use of Design Sensitivity Information in Response Surface and Kriging Metamodels , 2001 .

[43]  Ruichen Jin,et al.  Analytical Metamodel-Based Global Sensitivity Analysis and Uncertainty Propagation for Robust Design , 2004 .

[44]  Stefano Lucidi,et al.  A derivative-based algorithm for a particular class of mixed variable optimization problems , 2004, Optim. Methods Softw..

[45]  J. Dennis,et al.  Direct Search Methods on Parallel Machines , 1991 .

[46]  Michael S. Eldred,et al.  OVERVIEW OF MODERN DESIGN OF EXPERIMENTS METHODS FOR COMPUTATIONAL SIMULATIONS , 2003 .

[47]  J. Dennis,et al.  Mixed Variable Optimization of the Number and Composition of Heat Intercepts in a Thermal Insulation System , 2001 .

[48]  Andy J. Keane,et al.  Combining Global and Local Surrogate Models to Accelerate Evolutionary Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[49]  Herbert De Gersem,et al.  Simulation-Based Design Improvement of a Superconductive Magnet by Mixed-Integer Nonlinear Surrogate Optimization , 2007 .

[50]  Stephen J. Leary,et al.  A parallel updating scheme for approximating and optimizing high fidelity computer simulations , 2004 .

[51]  K. Madsen,et al.  Convergence of Hybrid Space Mapping Algorithms , 2004 .

[52]  Bernd Freisleben,et al.  A Scalable Algorithm for the Parallel Solution of Simulation-Based Optimization Problems , 2000, PDPTA.

[53]  Herbert Hamers,et al.  Gradient Estimation Schemes for Noisy Functions , 2003 .

[54]  Ren-Jye Yang,et al.  Approximation methods in multidisciplinary analysis and optimization: a panel discussion , 2004 .

[55]  Marco Sciandrone,et al.  An Algorithm Model for Mixed Variable Programming , 2005, SIAM J. Optim..

[56]  Eiichi Yoshida,et al.  On humanoid motion optimization , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[57]  C. T. Kelley,et al.  An Implicit Filtering Algorithm for Optimization of Functions with Many Local Minima , 1995, SIAM J. Optim..

[58]  Mirjam Dür,et al.  Probabilistic subproblem selection in branch-and-bound algorithms , 2005 .

[59]  Jong Hyeon Park,et al.  Generation of an Optimal Gait Trajectory for Biped Robots Using a Genetic Algorithm , 2004 .

[60]  Thomas Bäck,et al.  Metamodel-Assisted Evolution Strategies , 2002, PPSN.

[61]  Fumiya Iida,et al.  Towards Bipedal Jogging as a Natural Result of Optimizing Walking Speed for Passively Compliant Three-Segmented Legs , 2009, Int. J. Robotics Res..

[62]  S. Ranjithan,et al.  Using genetic algorithms to solve a multiple objective groundwater pollution containment problem , 1994 .

[63]  Martin Meckesheimer,et al.  Reliability Based Design Optimization Using Design Explorer , 2004 .

[64]  Liang-Cheng Chang,et al.  Dynamic Optimal Groundwater Management with Inclusion of Fixed Costs , 2002 .

[65]  S. Koziel,et al.  Space Mapping Optimization Algorithms for Engineering Design , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[66]  J. Dennis,et al.  Direct Search Methods for Nonlinearly Constrained Optimization Using Filters and Frames , 2004 .

[67]  M. S. Eldred,et al.  Multilevel parallel optimization using massively parallel structural dynamics , 2004 .

[68]  J. Denk,et al.  Synthesis of a Walking Primitive Database for a Humanoid Robot using Optimal Control Techniques , 2001 .

[69]  David E. Goldberg,et al.  Designing a competent simple genetic algorithm for search and optimization , 2000 .

[70]  Xiaoping Du,et al.  The use of metamodeling techniques for optimization under uncertainty , 2001 .

[71]  G. Pinder,et al.  Enhancement of the outer approximation method for the solution of concentration‐constrained optimal‐design groundwater‐remediation problems , 2003 .

[72]  Kemper Lewis,et al.  A method for using legacy data for metamodel-based design of large-scale systems , 2004 .

[73]  Dirk Thomas,et al.  Versatile, High-Quality Motions and Behavior Control of a Humanoid Soccer Robot , 2008, Int. J. Humanoid Robotics.

[74]  Christodoulos A. Floudas,et al.  Mixed Integer Nonlinear Programming , 2009, Encyclopedia of Optimization.

[75]  Arlen W. Harbaugh,et al.  User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model , 1996 .

[76]  Z. Michalewicz Genetic Algorithms , Numerical Optimization , and Constraints , 1995 .

[77]  Parveen Kumar Chandila,et al.  Strategy for Global Optimization and Post-Optimality Using Local Kriging Approximations , 2004 .

[78]  Jerome Sacks,et al.  Designs for Computer Experiments , 1989 .

[79]  I. Grossmann Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques , 2002 .

[80]  Ruichen Jin,et al.  On Sequential Sampling for Global Metamodeling in Engineering Design , 2002, DAC 2002.

[81]  Layne T. Watson,et al.  New Methods for Robust Design Using Computer Simulations , 2022 .

[82]  Thomas Bartz-Beielstein,et al.  Design and Analysis of Optimization Algorithms Using Computational Statistics , 2004 .

[83]  D. McKinney,et al.  Decomposition methods for water resources optimization models with fixed costs , 1998 .

[84]  Andy J. Keane,et al.  A Derivative Based Surrogate Model for Approximating and Optimizing the Output of an Expensive Computer Simulation , 2004, J. Glob. Optim..

[85]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[86]  T. J. Mitchell,et al.  Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments , 1991 .

[87]  Christian Dehlendorff,et al.  Design of Computer Experiments , 2010 .

[88]  Ronnie Belmans,et al.  A parametric finite element environment tuned for numerical optimization , 1998 .

[89]  Daniel E. Koditschek,et al.  Automated gait adaptation for legged robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[90]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[91]  T. Simpson,et al.  A Study on the Use of Kriging Models to Approximate Deterministic Computer Models , 2003, DAC 2003.

[92]  Robert Michael Lewis,et al.  Pattern Search Algorithms for Bound Constrained Minimization , 1999, SIAM J. Optim..

[93]  John E. Dennis,et al.  Optimization Using Surrogate Objectives on a Helicopter Test Example , 1998 .

[94]  Michael A. Saunders,et al.  USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .

[95]  Jack P. C. Kleijnen,et al.  Response surface methodology's steepest ascent and step size revisited , 2004, Eur. J. Oper. Res..

[96]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[97]  Dirk Thomas,et al.  REUSABLE ARCHITECTURE AND TOOLS FOR TEAMS OF LIGHTWEIGHT HETEROGENEOUS ROBOTS , 2006 .

[98]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[99]  Yew-Soon Ong,et al.  Hierarchical surrogate-assisted evolutionary optimization framework , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[100]  David E. Goldberg,et al.  Adaptive Hybrid Genetic Algorithm for Groundwater Remediation Design , 2005 .

[101]  Matthias Jüngel,et al.  XABSL - A Pragmatic Approach to Behavior Engineering , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[102]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[103]  O. SIAMJ.,et al.  ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS , 1997 .

[104]  Charles B. Roosen,et al.  An introduction to multivariate adaptive regression splines , 1995, Statistical methods in medical research.

[105]  Cord Niehaus,et al.  Gait Optimization on a Humanoid Robot using Particle Swarm Optimization , 2007 .

[106]  O. V. Stryk,et al.  DERIVATIVE-FREE OPTIMIZATION METHODS FOR HANDLING FIXED COSTS IN OPTIMAL GROUNDWATER REMEDIATION DESIGN , 2006 .

[107]  Andy J. Keane,et al.  Parameter screening using impact factors and surrogate-based ANOVA techniques , 2006 .

[108]  Christodoulos A. Floudas,et al.  Nonlinear and Mixed-Integer Optimization , 1995 .

[109]  Charles Audet,et al.  OrthoMADS: A Deterministic MADS Instance with Orthogonal Directions , 2008, SIAM J. Optim..

[110]  H. Fan A modification to particle swarm optimization algorithm , 2002 .

[111]  Cass T. Miller,et al.  Solution of a Groundwater Control Problem with Implicit Filtering , 2002 .

[112]  Dimitri P. Solomatine,et al.  Groundwater Remediation Strategy Using Global Optimization Algorithms , 2002 .

[113]  C. Currin,et al.  A Bayesian Approach to the Design and Analysis of Computer Experiments , 1988 .

[114]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[115]  Hans Bock,et al.  Practical Shape Optimization for Turbine and Compressor Blades by the Use of PRSQP Methods , 2002 .

[116]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[117]  Michael S. Eldred,et al.  Multilevel parallelism for optimization on MP computers - Theory and experiment , 2000 .

[118]  Virginia Torczon,et al.  On the Convergence of the Multidirectional Search Algorithm , 1991, SIAM J. Optim..

[119]  Mary C. Hill,et al.  MODFLOW-2000, the U.S. Geological Survey modular ground-water model : user guide to the LMT6 package, the linkage with MT3DMS for multi-species mass transport modeling , 2001 .

[120]  A. Mayer,et al.  Pump‐and‐treat optimization using well locations and pumping rates as decision variables , 1997 .

[121]  Jens Ziegler,et al.  Evolution von Laufrobotersteuerungen mit genetischer Programmierung , 2003 .

[122]  Meng Wang,et al.  Optimal Aeroacoustic Shape Design Using the Surrogate Management Framework , 2003 .

[123]  Friedemann Mattern Modellbildung und Simulation , 1993, Perspektiven der Informatik.

[124]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[125]  Maria da Conceição Cunha,et al.  On solving aquifer management problems with simulated annealing algorithms , 1999 .

[126]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[127]  J. Banks,et al.  Discrete-Event System Simulation , 1995 .

[128]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[129]  Jack P. C. Kleijnen,et al.  State-of-the-Art Review: A User's Guide to the Brave New World of Designing Simulation Experiments , 2005, INFORMS J. Comput..

[130]  Thomas Stützle,et al.  Local search algorithms for combinatorial problems: analysis, algorithms, and new applications , 1999 .

[131]  R. C. Peralta,et al.  Closure to discussion on Optimal in-situ bioremediation design by hybrid genetic algorithm-simulated annealing , 2005 .

[132]  Jiafu Tang,et al.  Extension of a hybrid Genetic Algorithm for nonlinear programming problems with equality and inequality constraints , 2002, Comput. Oper. Res..

[133]  P. Toint,et al.  Exploiting Band Structure in Unconstrained Optimization Without Derivatives , 2001 .

[134]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[135]  Roland N. Horne,et al.  Optimization of Well Placement , 2000 .

[136]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[137]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[138]  Ronald L. Huston,et al.  Dynamics of Multibody Systems , 1988 .

[139]  Michael S. Eldred,et al.  IMPLEMENTATION OF A TRUST REGION MODEL MANAGEMENT STRATEGY IN THE DAKOTA OPTIMIZATION TOOLKIT , 2000 .

[140]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[141]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[142]  Owen J. Eslinger,et al.  IFFCO: implicit filtering for constrained optimization, version 2 , 1999 .

[143]  Murray Smith,et al.  Neural Networks for Statistical Modeling , 1993 .

[144]  B. A. Murtagh,et al.  Solving nonlinear integer programs with large-scale optimization software , 1986 .

[145]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[146]  I. Grossmann,et al.  An LP/NLP based branch and bound algorithm for convex MINLP optimization problems , 1992 .

[147]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[148]  John W. Nicklow,et al.  Discrete-Time Optimal Control for Water Resources Engineering and Management , 2000 .

[149]  Russell R. Barton,et al.  Simulation metamodels , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[150]  Herbert Hamers,et al.  Constrained optimization involving expensive function evaluations: A sequential approach , 2005, Eur. J. Oper. Res..

[151]  John W. Bandler,et al.  Space Mapping for Engineering Optimization , 2006 .

[152]  Ronnie Belmans,et al.  Optimizing ferromagnetic characteristics to reduce Newton iterations , 1998 .

[153]  Jessy W. Grizzle,et al.  Design of asymptotically stable walking for a 5-link planar biped walker via optimization , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[154]  Oskar von Stryk,et al.  International Journal of Robotics Research , 2022 .

[156]  Ihsan Sabuncuoglu,et al.  Simulation optimization: A comprehensive review on theory and applications , 2004 .

[157]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[158]  Q. Stout,et al.  Response adaptive designs that incorporate switching costs and constraints , 2007 .

[159]  Larry W. Mays Optimal Control Of Hydrosystems , 1997 .

[160]  Russell R. Barton Design of experiments for fitting subsystem metamodels , 1997, WSC '97.

[161]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[162]  Toby J. Mitchell,et al.  An algorithm for the construction of “ D -optimal” experimental designs , 2000 .

[163]  Timothy M. Mauery,et al.  COMPARISON OF RESPONSE SURFACE AND KRIGING MODELS FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION , 1998 .

[164]  M. Abramson Mixed Variable Optimization of a Load-Bearing Thermal Insulation System Using a Filter Pattern Search Algorithm , 2004 .

[165]  Jay D. Martin,et al.  USE OF ADAPTIVE METAMODELING FOR DESIGN OPTIMIZATION , 2002 .

[166]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[167]  A. Goldstein,et al.  Optimization of functions whose values are subject to small errors , 1977 .

[168]  Jack P. C. Kleijnen,et al.  Kriging interpolation in simulation: a survey , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[169]  P. C. Gehlen,et al.  Computer Experiments , 1996 .

[170]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[171]  Marianthi G. Ierapetritou,et al.  Adaptive optimisation of noisy black-box functions inherent in microscopic models , 2007, Comput. Chem. Eng..

[172]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[173]  Richard E. Nance,et al.  Perspectives on the Evolution of Simulation , 2002, Oper. Res..

[174]  Stewart Robinson,et al.  Simulation: A Statistical Perspective , 1993 .

[175]  Sophia Lefantzi,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .

[176]  Andy J. Keane,et al.  A Constraint Mapping Approach to the Structural Optimization of an Expensive Model using Surrogates , 2001 .

[177]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[178]  Timothy W. Simpson,et al.  Sampling Strategies for Computer Experiments: Design and Analysis , 2001 .

[179]  Farrokh Mistree,et al.  Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization , 2001 .

[180]  J. Kleijnen Statistical tools for simulation practitioners , 1986 .

[181]  Cass T. Miller,et al.  Solution of a Well-Field Design Problem with Implicit Filtering , 2004 .

[182]  Donald R. Jones,et al.  Direct Global Optimization Algorithm , 2009, Encyclopedia of Optimization.

[183]  L Shawn Matott,et al.  Application of heuristic optimization techniques and algorithm tuning to multilayered sorptive barrier design. , 2006, Environmental science & technology.

[184]  J. Eheart,et al.  Using Genetic Algorithms to Solve a Multiobjective Groundwater Monitoring Problem , 1995 .

[185]  Jack P. C. Kleijnen,et al.  The correct Kriging variance estimated by bootstrapping , 2006, J. Oper. Res. Soc..

[186]  Owen J. Eslinger,et al.  Algorithms for Noisy Problems in Gas Transmission Pipeline Optimization , 2001 .

[187]  Barbara S. Minsker,et al.  Which Groundwater Remediation Objective is Better: A Realistic One or a Simple One? , 2005 .

[188]  Mikael A. Langthjem,et al.  Multifidelity Response Surface Approximations for the Optimum Design of Diffuser Flows , 2001 .

[189]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[190]  Robert Michael Lewis,et al.  A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds , 2002, SIAM J. Optim..

[191]  Christodoulos A. Floudas,et al.  Mixed-Integer Nonlinear Optimization in Process Synthesis , 1998 .

[192]  Kaj Holmberg,et al.  On the convergence of cross decomposition , 1990, Math. Program..

[193]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007, DAC 2006.

[194]  Bernard Grossman,et al.  Polynomial Response Surface Approximations for the Multidisciplinary Design Optimization of a High Speed Civil Transport , 2001 .

[195]  Andy J. Keane,et al.  Metamodeling Techniques For Evolutionary Optimization of Computationally Expensive Problems: Promises and Limitations , 1999, GECCO.

[196]  Arlen W. Harbaugh,et al.  A modular three-dimensional finite-difference ground-water flow model , 1984 .

[197]  Gerald W. Evans,et al.  Comparison of global search methods for design optimization using simulation , 1991, 1991 Winter Simulation Conference Proceedings..

[198]  Oskar von Stryk,et al.  A mixed-integer simulation-based optimization approach with surrogate functions in water resources management , 2008 .

[199]  Juan Julián Merelo Guervós,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[200]  Michael James Sasena,et al.  Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. , 2002 .

[201]  Charles Audet,et al.  A Pattern Search Filter Method for Nonlinear Programming without Derivatives , 2001, SIAM J. Optim..

[202]  Fred W. Glover,et al.  New advances for wedding optimization and simulation , 1999, WSC '99.

[203]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[204]  J. Dennis,et al.  Pattern search algorithms for mixed variable general constrained optimization problems , 2003 .

[205]  J. S ndergaard,et al.  Optimization Using Surrogate Models-by the Space Mapping Technique , 2003 .

[206]  M. Sayeed,et al.  Efficient Parallel Implementation of Hybrid Optimization Approaches for Solving Groundwater Inverse Problems , 2005 .

[207]  Distributed Solution of Simulation-Based Optimization Problems on Networks of Workstation , 2000, Computación y Sistemas.

[208]  Christopher M. Siefert,et al.  Model-Assisted Pattern Search Methods for Optimizing Expensive Computer Simulations , 2002 .

[209]  C. T. Kelley,et al.  Superlinear Convergence and Implicit Filtering , 1999, SIAM J. Optim..

[210]  Tamara G. Kolda,et al.  Algorithm 856: APPSPACK 4.0: asynchronous parallel pattern search for derivative-free optimization , 2006, TOMS.

[211]  G. Matheron Principles of geostatistics , 1963 .

[212]  Oskar von Stryk,et al.  Hardware-in-the-Loop Optimization of the Walking Speed of a Humanoid Robot , 2006 .

[213]  Arnold Neumaier,et al.  SNOBFIT -- Stable Noisy Optimization by Branch and Fit , 2008, TOMS.

[214]  D. Finkel,et al.  Direct optimization algorithm user guide , 2003 .

[215]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[216]  Robert Michael Lewis,et al.  Pattern Search Methods for Linearly Constrained Minimization , 1999, SIAM J. Optim..

[217]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[218]  Virginia Torczon,et al.  Using approximations to accelerate engineering design optimization , 1998 .

[219]  Herbert De Gersem,et al.  Mixed-integer simulation-based optimization for a superconductive magnet design , 2006 .

[220]  M. Sasena,et al.  Global optimization of problems with disconnected feasible regions via surrogate modeling , 2002 .

[221]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[222]  Charles Audet,et al.  Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems , 2008 .

[223]  C. J. Price,et al.  On the Convergence of Grid-Based Methods for Unconstrained Optimization , 2000, SIAM J. Optim..

[224]  Zbigniew Michalewicz,et al.  Advances in Metaheuristics for Hard Optimization (Natural Computing Series) , 2007 .

[225]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[226]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[227]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[228]  William J. Welch,et al.  Computer experiments and global optimization , 1997 .

[229]  Christopher E. Kees,et al.  A hydraulic capture application for optimal remediation design , 2004 .

[230]  Joseph G. Pigeon,et al.  Statistics for Experimenters: Design, Innovation and Discovery , 2006, Technometrics.

[231]  Sven Behnke,et al.  Stochastic optimization of bipedal walking using gyro feedback and phase resetting , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[232]  Charles Audet,et al.  Pattern Search Algorithms for Mixed Variable Programming , 2000, SIAM J. Optim..

[233]  H. De Gersem,et al.  Mixed-Integer Nonlinear Design Optimization of a Superconductive Magnet With Surrogate Functions , 2008, IEEE Transactions on Magnetics.

[234]  Russell C. H. Cheng,et al.  Optimization by simulation metamodelling methods , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[235]  Arno Rasch Efficient computation of derivatives for optimal experimental design , 2007 .

[236]  Sven Leyffer,et al.  Integrating SQP and Branch-and-Bound for Mixed Integer Nonlinear Programming , 2001, Comput. Optim. Appl..

[237]  Florentin Wörgötter,et al.  Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning , 2007, PLoS Comput. Biol..

[238]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[239]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[240]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[241]  Thomas Röfer,et al.  Evolutionary Gait-Optimization Using a Fitness Function Based on Proprioception , 2004, RoboCup.

[242]  Christine A. Shoemaker,et al.  Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions , 2005, J. Glob. Optim..

[243]  Omprakash K. Gupta,et al.  Branch and Bound Experiments in Convex Nonlinear Integer Programming , 1985 .

[244]  Giovanni Mengali,et al.  A hybrid genetic based optimization procedure for aircraft conceptual analysis , 2006 .

[245]  Jianhua Z. Huang Functional ANOVA Models for Generalized Regression , 1998 .

[246]  Bernard Yannou,et al.  Metamodeling of Combined Discrete/Continuous Responses , 2001 .

[247]  R. Lewis,et al.  An Overview of First-Order Model Management for Engineering Optimization , 2001 .

[248]  Loren Paul Rees,et al.  A sequential-design metamodeling strategy for simulation optimization , 2004, Comput. Oper. Res..

[249]  Sven Leyffer,et al.  Solving mixed integer nonlinear programs by outer approximation , 1994, Math. Program..

[250]  Donald R. Jones,et al.  Global versus local search in constrained optimization of computer models , 1998 .

[251]  Yong Zhang,et al.  Uniform Design: Theory and Application , 2000, Technometrics.

[252]  Herbert Hamers,et al.  On D-optimality based trust regions for black-box optimization problems , 2006 .

[253]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[254]  Nils-Hassan Quttineh,et al.  An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization , 2008 .

[255]  Martin Buss,et al.  Towards an autonomous, humanoid, and dynamically walking robot: modeling, optimal trajectory planning, hardware architecture, and experiments , 2003 .

[256]  Marianthi G. Ierapetritou,et al.  A kriging based method for the solution of mixed-integer nonlinear programs containing black-box functions , 2009, J. Glob. Optim..

[257]  S. Russenschuck,et al.  Accurate calculation of fringe fields in the LHC main dipoles , 2000, IEEE Transactions on Applied Superconductivity.

[258]  Oskar von Stryk,et al.  Dynamic modeling in the simulation, optimization and control of legged robots , 2003 .