Automated Theorem Proving in Euler Diagram Systems

Diagrammatic reasoning has the potential to be important in numerous application areas. This paper focuses on the simple, but widely used, Euler diagrams that form the basis of many more expressive logics. We have implemented a diagrammatic theorem prover, called Edith, which has access to four sound and complete sets of reasoning rules for Euler diagrams. Furthermore, for each rule set we develop a sophisticated heuristic to guide the search for a proof. This paper is about understanding how the choice of reasoning rule set affects the time taken to find proofs. Such an understanding will influence reasoning rule design in other logics. Moreover, this work specific to Euler diagrams directly benefits the many logics based on Euler diagrams. We investigate how the time taken to find a proof depends not only on the proof task but also on the reasoning system used. Our evaluation allows us to predict the best choice of reasoning system, given a proof task, in terms of time taken, and we extract a guide for defining reasoning rules for other logics in order to minimize time requirements.

[1]  Judith Masthoff,et al.  Generating Readable Proofs: A Heuristic Approach to Theorem Proving With Spider Diagrams , 2004, Diagrams.

[2]  Andrew Fish,et al.  Investigating Reasoning with Constraint Diagrams , 2005, Electron. Notes Theor. Comput. Sci..

[3]  Simon J. Thompson,et al.  Tableaux for Diagrammatic Reasoning , 2005, DMS.

[4]  Hajime Sawamura,et al.  JVenn: A Visual Reasoning System with Diagrams and Sentences , 2000, Diagrams.

[5]  Stefan Edelkamp Memory Limitations in Artificial Intelligence , 2002, Algorithms for Memory Hierarchies.

[6]  Stuart Kent,et al.  Formalizing spider diagrams , 1999, Proceedings 1999 IEEE Symposium on Visual Languages.

[7]  Zenon Kulpa,et al.  DIAGRAMMATIC REPRESENTATION AND REASONING , 1994 .

[8]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[9]  John Howse,et al.  Generating Euler Diagrams , 2002, Diagrams.

[10]  Gem Stapleton,et al.  Formal issues in languages based on closed curves , 2006 .

[11]  Yuxiao Zhao,et al.  A reuse-based method of developing the ontology for e-procurement , 2003 .

[12]  Gem Stapleton,et al.  A constraint diagram reasoning system , 2003 .

[13]  Robin P. Clark Failure Mode Modular De-Composition Using Spider Diagrams , 2005, Electron. Notes Theor. Comput. Sci..

[14]  David A. Carrington,et al.  Visualization of formal specifications , 1999, Proceedings Sixth Asia Pacific Software Engineering Conference (ASPEC'99) (Cat. No.PR00509).

[15]  E. Feigenbaum,et al.  Computers and Thought , 1963 .

[16]  Shamimabi Paurobally,et al.  Propositional Statecharts for Agent Interaction Protocols , 2005, Euler.

[17]  Peter Rodgers,et al.  Layout metrics for Euler diagrams , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[18]  Thomas Reichherzer,et al.  Collaborative knowledge capture in ontologies , 2005, K-CAP '05.

[19]  Gem Stapleton,et al.  A Survey of Reasoning Systems Based on Euler Diagrams , 2005, Euler.

[20]  Gem Stapleton,et al.  Automated Theorem Proving with Spider Diagrams , 2004, Electron. Notes Theor. Comput. Sci..

[21]  John M. Walker,et al.  Cancer Epidemiology , 2009, Methods in Molecular Biology.

[22]  Vittorio Scarano,et al.  VENNFS: a Venn-diagram file manager , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[23]  Gerard Allwein,et al.  Using DAG transformations to verify Euler/Venn homogeneous and Euler/Venn FOL heterogeneous rules of inference , 2003, Software & Systems Modeling.

[24]  Gem Stapleton,et al.  Spider Diagrams , 2005, LMS J. Comput. Math..

[25]  Ulrich Meyer,et al.  Algorithms for Memory Hierarchies , 2003, Lecture Notes in Computer Science.

[26]  Richard P. Hill,et al.  The Basic Science of Oncology , 1989 .

[27]  Alan Bundy,et al.  On Differences between the Real and Physical Plane , 2004, Diagrams.

[28]  John Howse,et al.  Precise visual modeling: A case-study , 2004, Software & Systems Modeling.

[29]  Hans A. Kestler,et al.  Generalized Venn diagrams: a new method of visualizing complex genetic set relations , 2005, Bioinform..

[30]  Correspondent,et al.  Hyperproof : the multimodal moral , 1996 .

[31]  Gem Stapleton,et al.  Corresponding Regions in Euler Diagrams , 2002, Diagrams.

[32]  Peter Rodgers,et al.  Evaluating the Comprehension of Euler Diagrams , 2007, 2007 11th International Conference Information Visualization (IV '07).

[33]  Sun-Joo Shin,et al.  The logical status of diagrams , 1995 .

[34]  H. Gelernter,et al.  Realization of a geometry theorem proving machine , 1995, IFIP Congress.

[35]  Fernando Molina,et al.  Reasoning with extended Venn-Peirce diagrammatic systems , 2001 .

[36]  Chris John Reasoning with Projected Contours , 2004, Diagrams.

[37]  Judith Masthoff,et al.  Generating proofs with spider diagrams using heuristics , 2004 .

[38]  John Taylor,et al.  On Diagram Tokens and Types , 2002, Diagrams.

[39]  Gem Stapleton,et al.  A Decidable Constraint Diagram Reasoning System , 2005, J. Log. Comput..

[40]  Rina Dechter,et al.  Generalized best-first search strategies and the optimality of A* , 1985, JACM.

[41]  Frank Ruskey,et al.  Drawing Area-Proportional Venn and Euler Diagrams , 2003, GD.

[42]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[43]  Alan Bundy,et al.  Automation of Diagrammatic Reasoning , 1997, IJCAI.

[44]  Herbert A. Simon,et al.  Why a Diagram is (Sometimes) Worth Ten Thousand Words , 1987, Cogn. Sci..

[45]  Eric Hammer,et al.  Logic and Visual Information , 1995 .

[46]  Mateja Jamnik Mathematical Reasoning with Diagrams , 2001 .

[47]  Jaume Agustí-Cullell,et al.  Visual Logic Programming by Means of Diagram Transformations , 1998, APPIA-GULP-PRODE.

[48]  Nikolaus G. Swoboda,et al.  Implementing Euler/Venn Reasoning Systems , 2002, Diagrammatic Representation and Reasoning.

[49]  Andrew Fish,et al.  The semantics of augmented constraint diagrams , 2005, J. Vis. Lang. Comput..

[50]  Stuart Kent,et al.  Constraint Diagrams: Visualizing Invariants in OO Modelling , 1997, OOPSLA 1997.

[51]  Oliver Lemon,et al.  Spatial logic and the complexity of diagrammatic reasoning , 1997 .

[52]  Donald MacKenzie,et al.  Computers and the sociology of mathematical proof , 1998, FM-Trends 1998.

[53]  Kozo Sugiyama,et al.  Layout Adjustment and the Mental Map , 1995, J. Vis. Lang. Comput..

[54]  Alan Bundy,et al.  Dr.Doodle: A Diagrammatic Theorem Prover , 2004, IJCAR Doctoral Programme.

[55]  Gem Stapleton,et al.  The Expressiveness of Spider Diagrams , 2004, J. Log. Comput..

[56]  Judith Masthoff,et al.  Appendices for automated theorem proving in Euler diagram systems , 2006 .

[57]  E. Mapother,et al.  Collected papers, vol. I , 1925 .

[58]  Peter Rodgers,et al.  Dynamic Euler Diagram Drawing , 2004, 2004 IEEE Symposium on Visual Languages - Human Centric Computing.