Uniformly sampled genetic algorithm with gradient search for structural identification - Part II: Local search

This paper investigates several gradient local search methods as an enhancement to Part I, to further improve the computational efficiency while achieving the same identification accuracy. The present study is significant in several ways. First, this study reveals the characteristics of structural identification from the optimization perspective. Second, the ''switch point'' from global search to local search is determined with due consideration in convergence speed and avoidance of local optima. Finally, the combined strategy based on Part I and Part II with a particular local search (BFGS) is found to achieve substantial improvement in identification efficiency and accuracy.

[1]  Sami F. Masri,et al.  Neural Network Approach to Detection of Changes in Structural Parameters , 1996 .

[2]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[3]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[4]  L. M. See,et al.  Estimation of structural parameters in time domain: A substructure approach , 1991 .

[5]  Bin Xu,et al.  Direct identification of structural parameters from dynamic responses with neural networks , 2004, Eng. Appl. Artif. Intell..

[6]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[7]  P. Caravani,et al.  Recursive Least-Squares Time Domain Identification of Structural Parameters , 1977 .

[8]  Chan Ghee Koh,et al.  STRUCTURAL DAMAGE QUANTIFICATION BY SYSTEM IDENTIFICATION , 2007 .

[9]  Chan Ghee Koh,et al.  Distributed GA for large system identification problems , 2002, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[10]  D. Robinson,et al.  COMPARISON OF QUASI- AND PSEUDO-MONTE CARLO SAMPLING FOR RELIABILITY AND UNCERTAINTY ANALYSIS , 1999 .

[11]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[12]  Chee Kiong Soh,et al.  Force identification of dynamic systems using genetic programming , 2005 .

[13]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[14]  Chan Ghee Koh,et al.  Output‐only structural identification in time domain: Numerical and experimental studies , 2008 .

[15]  H. A. Cole,et al.  On-line failure detection and damping measurement of aerospace structures by random decrement signatures , 1973 .

[16]  M. Degroot,et al.  Probability and Statistics , 2021, Examining an Operational Approach to Teaching Probability.

[17]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[18]  Thomas G. Carne,et al.  The Natural Excitation Technique (NExT) for modal parameter extraction from operating wind turbines , 1993 .

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[21]  W. J. Whiten,et al.  Computational investigations of low-discrepancy sequences , 1997, TOMS.

[22]  Lih-Yuan Deng,et al.  Orthogonal Arrays: Theory and Applications , 1999, Technometrics.

[23]  M. Hoshiya,et al.  Structural Identification by Extended Kalman Filter , 1984 .

[24]  J. Bongard,et al.  Co‐evolutionary algorithm for structural damage identification using minimal physical testing , 2007 .

[25]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[26]  F. Udwadia,et al.  Some Uniqueness Results Related to Building Structural Identification , 1978 .

[27]  E. C. Mikulcik,et al.  A method for the direct identification of vibration parameters from the free response , 1977 .

[28]  M. L. Wang,et al.  Structural Damage Detection Using an Iterative Neural Network , 2000 .

[29]  Y. K. Cheung,et al.  Identification of masses moving on multi-span beams based on a genetic algorithm , 2003 .

[30]  Zbigniew Zembaty,et al.  Damage reconstruction of 3D frames using genetic algorithms with Levenberg–Marquardt local search , 2009 .

[31]  K. Shankar,et al.  PARAMETRIC IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS USING COMBINED LEVENBERG–MARQUARDT AND GENETIC ALGORITHM , 2007 .

[32]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[33]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[34]  Lawrence J. Fogel,et al.  Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming , 1999 .

[35]  He-sheng Tang,et al.  Differential evolution strategy for structural system identification , 2008 .

[36]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[37]  George E. P. Box,et al.  Evolutionary Operation: a Method for Increasing Industrial Productivity , 1957 .

[38]  Raimondo Betti,et al.  Identification of Structural Systems using an Evolutionary Strategy , 2004 .

[39]  Jamshid Ghaboussi,et al.  Genetic algorithm in structural damage detection , 2001 .

[40]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[41]  José Elias Laier,et al.  A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification , 2009, Adv. Eng. Softw..

[42]  Hong Hao,et al.  Vibration-based Damage Detection of Structures by Genetic Algorithm , 2002 .

[43]  T. A. Straeter,et al.  System identification computational considerations. , 1972 .

[44]  C. R. Rao,et al.  Factorial Experiments Derivable from Combinatorial Arrangements of Arrays , 1947 .

[45]  George A. Bekey,et al.  System identification- an introduction and a survey , 1970 .

[46]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[47]  Genichi Taguchi,et al.  Taguchi's Quality Engineering Handbook , 2004 .

[48]  Yasushi Mitsui,et al.  APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LOAD IDENTIFICATION , 1998 .

[49]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[50]  Chan Ghee Koh,et al.  A hybrid computational strategy for identification of structural parameters , 2003 .

[51]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[52]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[53]  Sami F. Masri,et al.  MODELLING UNKNOWN STRUCTURAL SYSTEMS THROUGH THE USE OF NEURAL NETWORKS , 1996 .

[54]  Chung Bang Yun,et al.  Identification of Linear Structural Dynamic Systems , 1982 .

[55]  James L. Beck,et al.  Determining models of structures from earthquake records , 1978 .

[56]  Chan Ghee Koh,et al.  PARAMETER IDENTIFICATION OF LARGE STRUCTURAL SYSTEMS IN TIME DOMAIN , 2000 .

[57]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[58]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[59]  D. Owen,et al.  Finite element software for plates and shells , 1984 .

[60]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[61]  Richard W. Longman,et al.  On the Uniqueness of Solutions for the Identification of Linear Structural Systems , 2006 .

[62]  James F. Doyle,et al.  A genetic algorithm for determining the location of structural impacts , 1994 .

[63]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[64]  James L. Beck,et al.  Structural identification using linear models and earthquake records , 1980 .

[65]  Rong-Song He,et al.  Damage detection by an adaptive real-parameter simulated annealing genetic algorithm , 2006 .

[66]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[67]  Cecilia Surace,et al.  An application of Genetic Algorithms to identify damage in elastic structures , 1996 .

[68]  William A. Sethares,et al.  Sensor placement for on-orbit modal identification via a genetic algorithm , 1993 .

[69]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[70]  Chan Ghee Koh,et al.  Modified genetic algorithm strategy for structural identification , 2006 .

[71]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[72]  Chee Kiong Soh,et al.  Hybrid Genetic Programming with Local Search Operators for Dynamic Force Identification , 2007 .