Doss ρ-Almost Periodic Type Functions in Rn

In this paper, we investigate various classes of multi-dimensional Doss ρ-almost periodic type functions of the form F:Λ×X→Y, where n∈N,∅≠Λ⊆Rn, X and Y are complex Banach spaces, and ρ is a binary relation on Y. We work in the general setting of Lebesgue spaces with variable exponents. The main structural properties of multi-dimensional Doss ρ-almost periodic type functions, like the translation invariance, the convolution invariance and the invariance under the actions of convolution products, are clarified. We examine connections of Doss ρ-almost periodic type functions with (ω,c)-periodic functions and Weyl-ρ-almost periodic type functions in the multi-dimensional setting. Certain applications of our results to the abstract Volterra integro-differential equations and the partial differential equations are given.

[1]  M. Kostic,et al.  Multi-dimensional c-almost periodic type functions and applications , 2022, Electronic Journal of Differential Equations.

[2]  M. Kostic Selected Topics in Almost Periodicity , 2021 .

[3]  M. T. Khalladi,et al.  Multi-dimensional ρ-almost periodic type functions and applications , 2020, Applicable Analysis.

[4]  M. Kostic,et al.  Generalized Almost Periodicity in Lebesgue Spaces with Variable Exponents , 2020, Mathematics.

[5]  M. T. Khalladi,et al.  c-Almost periodic type functions and applications , 2020, Nonautonomous Dynamical Systems.

[6]  M. Kostic Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations , 2019 .

[7]  T. Diagana,et al.  Generalized almost periodic and generalized asymptotically almost periodic type functions in Lebesgue spaces with variable exponents $L^{p(x)}$ , 2019, 1903.05873.

[8]  Marat Akhmet,et al.  Unpredictable points and chaos , 2016, Commun. Nonlinear Sci. Numer. Simul..

[9]  Toka Diagana,et al.  Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces , 2013 .

[10]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[11]  S. Salsa,et al.  Partial Differential Equations in Action: From Modelling to Theory , 2010 .

[12]  A. Haraux,et al.  An Example of Uniformly Recurrent Function which is not Almost Periodic , 2004 .

[13]  Gaston M. N’Guérékata,et al.  Almost Automorphic and Almost Periodic Functions in Abstract Spaces , 2001 .

[14]  Alexander Pankov,et al.  Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations , 1990 .

[15]  Richard K. Miller On almost periodic differential equations , 1964 .

[16]  R. Doss On Generalized Almost Periodic Functions , 1954 .

[17]  Vipin Kumar,et al.  REMOTELY c -ALMOST PERIODIC TYPE FUNCTIONS IN R n , 2022 .

[18]  Michal Fečkan,et al.  $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations , 2021 .

[19]  M. Akhmet Almost Periodicity, Chaos, and Asymptotic Equivalence , 2020 .

[20]  Michal Feckan (ω,T)-PERIODIC SOLUTIONS OF IMPULSIVE EVOLUTION EQUATIONS , 2020 .

[21]  Olli Toivanen,et al.  Lebesgue and Sobolev spaces with variable exponents , 2014 .

[22]  J. Grande Hierarchy of almost-periodic function spaces , 2006 .

[23]  Samuel Zaidman,et al.  Almost-periodic functions in abstract spaces , 1985 .

[24]  R. Grimmer,et al.  Asymptotically Almost Periodic Solutions of Differential Equations , 1969 .

[25]  R. Doss On Generalized Almost Periodic Functions (II) , 1962 .

[26]  N. Wiener,et al.  Almost Periodic Functions , 1932, The Mathematical Gazette.