The induced 2-tuple linguistic generalized OWA operator and its application in linguistic decision making

We present the induced 2-tuple linguistic generalized ordered weighted averaging (2-TILGOWA) operator. This new aggregation operator extends previous approaches by using generalized means, order-inducing variables in the reordering of the arguments and linguistic information represented with the 2-tuple linguistic approach. Its main advantage is that it includes a wide range of linguistic aggregation operators. Thus, its analyses can be seen from different perspectives and we obtain a much more complete picture of the situation considered and are able to select the alternative that best fits with with our interests or beliefs. We further generalize the operator by using quasi-arithmetic means, and obtain the Quasi-2-TILOWA operator. We conclude this paper by analysing the applicability of this new approach in a decision-making problem concerning product management.

[1]  Ronald R. Yager,et al.  Heavy OWA Operators , 2002, Fuzzy Optim. Decis. Mak..

[2]  Ronald R. Yager,et al.  Centered OWA Operators , 2007, Soft Comput..

[3]  Zeshui Xu,et al.  Dynamic intuitionistic fuzzy multi-attribute decision making , 2008, Int. J. Approx. Reason..

[4]  Ali Emrouznejad,et al.  MP-OWA: The most preferred OWA operator , 2008, Knowl. Based Syst..

[5]  J. Merigó,et al.  The generalized adequacy coefficient and its application in strategic decision making , 2008 .

[6]  J. Fodor,et al.  Aggregation of Ordinal Information in Decision Making , 2007, 2007 IEEE International Conference on Computational Cybernetics.

[7]  Mahdi Zarghami,et al.  A fuzzy-stochastic OWA model for robust multi-criteria decision making , 2008, Fuzzy Optim. Decis. Mak..

[8]  Zeshui Xu,et al.  An overview of methods for determining OWA weights , 2005, Int. J. Intell. Syst..

[9]  Ronald R. Yager,et al.  Induced aggregation operators , 2003, Fuzzy Sets Syst..

[10]  Piero P. Bonissone,et al.  A fuzzy sets based linguistic approach: Theory and applications , 1980, WSC '80.

[11]  Xinfan Wang Fuzzy Number Intuitionistic Fuzzy Arithmetic Aggregation Operators , 2008 .

[12]  Ronald R. Yager,et al.  Generalized OWA Aggregation Operators , 2004, Fuzzy Optim. Decis. Mak..

[13]  J. Kacprzyk,et al.  The Ordered Weighted Averaging Operators: Theory and Applications , 1997 .

[14]  Constantin Virgil Negoita Approximate Reasoning in Decision Analysis, M.M. Gupta, E. Sanchez (Eds.). North-Holland, Napoli (1982), 453 , 1983 .

[15]  Vicente Liern,et al.  Soft computing-based aggregation methods for human resource management , 2008, Eur. J. Oper. Res..

[16]  Francisco Herrera,et al.  A 2-tuple fuzzy linguistic representation model for computing with words , 2000, IEEE Trans. Fuzzy Syst..

[17]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[18]  J. Merigó,et al.  Induced aggregation operators in decision making with the Dempster-Shafer belief structure , 2009 .

[19]  Zeshui Xu,et al.  On multi-period multi-attribute decision making , 2008, Knowl. Based Syst..

[20]  A. M. G. Lafuente,et al.  Unification Point In Methods For The Selection Of Financial Products , 2007 .

[21]  Francisco Herrera,et al.  A Fuzzy Linguistic Methodology to Deal With Unbalanced Linguistic Term Sets , 2008, IEEE Transactions on Fuzzy Systems.

[22]  Janusz Kacprzyk,et al.  The Ordered Weighted Averaging Operators , 1997 .

[23]  Nicolaos B. Karayiannis,et al.  Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators , 2000, IEEE Trans. Neural Networks Learn. Syst..

[24]  J. Merigó,et al.  Using the OWA Operator in the Minkowski Distance , 2008 .

[25]  Francisco Herrera,et al.  A study of the origin and uses of the ordered weighted geometric operator in multicriteria decision making , 2003, Int. J. Intell. Syst..

[26]  Gleb Beliakov,et al.  Learning Weights in the Generalized OWA Operators , 2005, Fuzzy Optim. Decis. Mak..

[27]  J. M. M. Lindahl NUEVAS EXTENSIONES A LOS OPERADORES OWA Y SU APLICACIÓN EN LOS MÉTODOS DE DECISIÓN , 2009 .

[28]  Francisco Herrera,et al.  An Interactive Decision Support System Based on Consistency Criteria , 2008, J. Multiple Valued Log. Soft Comput..

[29]  Francisco Herrera,et al.  A Sequential Selection Process in Group Decision Making with a Linguistic Assessment Approach , 1995, Inf. Sci..

[30]  Dimitar Filev,et al.  Induced ordered weighted averaging operators , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[31]  Zeshui Xu,et al.  An interactive procedure for linguistic multiple attribute decision making with incomplete weight information , 2007, Fuzzy Optim. Decis. Mak..

[32]  Byeong Seok Ahn,et al.  Least‐squared ordered weighted averaging operator weights , 2008, Int. J. Intell. Syst..

[33]  R. Yager Families of OWA operators , 1993 .

[34]  Jin-Hsien Wang,et al.  A new version of 2-tuple fuzzy linguistic representation model for computing with words , 2006, IEEE Trans. Fuzzy Syst..

[35]  Z. S. Xu,et al.  Eowa And Eowg Operators For Aggregating Linguistic Labels Based On Linguistic Preference Relations , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[36]  Ronald R. Yager,et al.  Using trapezoids for representing granular objects: Applications to learning and OWA aggregation , 2008, Inf. Sci..