Thermal conductivity of silicon nanocrystals and polystyrene nanocomposite thin films

Silicon nanocrystals (SiNCs) are well known for their size-dependent optical and electronic properties; they also have the potential for low yet controllable thermal properties. As a silicon-based low-thermal conductivity material is required in microdevice applications, SiNCs can be utilized for thermal insulation. In this paper, SiNCs and polymer nanocomposites were produced, and their thermal conductivity, including the density and specific heat, was measured. Measurement results were compared with thermal conductivity models for composite materials, and the comparison shows a decreasing value of the thermal conductivity, indicating the effect of the size and presence of the nanostructure on the thermal conductivity. Moreover, employing silicon inks at room temperature during the fabrication process enables a low cost of fabrication and preserves the unique properties of SiNCs.

[1]  Deren Yang,et al.  Silicon-nanocrystal-incorporated ternary hybrid solar cells , 2016 .

[2]  Bernhard Rieger,et al.  Silicon Nanocrystals and Silicon-Polymer Hybrids: Synthesis, Surface Engineering, and Applications. , 2016, Angewandte Chemie.

[3]  H. Matsui,et al.  Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material , 2015 .

[4]  T. Nozaki,et al.  A parametric study of non-thermal plasma synthesis of silicon nanoparticles from a chlorinated precursor , 2014 .

[5]  T. Nozaki,et al.  Oxygen passivation of silicon nanocrystals: Influences on trap states, electron mobility, and hybrid solar cell performance , 2014 .

[6]  T. Nozaki,et al.  Silicon nanocrystal conjugated polymer hybrid solar cells with improved performance , 2014 .

[7]  Benjamin F. P. McVey,et al.  Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. , 2014, Accounts of chemical research.

[8]  T. Nozaki,et al.  Plasma Synthesis of Silicon Nanocrystals: Application to Organic/Inorganic Photovoltaics through Solution Processing , 2014 .

[9]  A. Meldrum,et al.  Highly Luminescent Covalently Linked Silicon Nanocrystal/Polystyrene Hybrid Functional Materials: Synthesis, Properties, and Processability , 2014 .

[10]  V. Smirnov,et al.  Wide Gap Microcrystalline Silicon Oxide Emitter for a-SiOx:H/c-Si Heterojunction Solar Cells , 2013 .

[11]  T. Nozaki,et al.  Hybrid Silicon Nanocrystal/Poly(3-hexylthiophene-2,5-diyl) Solar Cells from a Chlorinated Silicon Precursor , 2013 .

[12]  I. Doğan,et al.  Direct characterization of nanocrystal size distribution using Raman spectroscopy , 2013 .

[13]  T. Gregorkiewicz,et al.  Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution , 2013 .

[14]  L. Mangolini Synthesis, properties, and applications of silicon nanocrystals , 2013 .

[15]  Deren Yang,et al.  Photoluminescence from Silicon Nanocrystals in Encapsulating Materials , 2013 .

[16]  K. Nanda Size-dependent density of nanoparticles and nanostructured materials , 2012 .

[17]  T. Nozaki,et al.  Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma , 2011, Nanotechnology.

[18]  A. Fina,et al.  Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review , 2011 .

[19]  C. Dames,et al.  Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. , 2011, Nano letters.

[20]  J. Chelikowsky,et al.  First-principles study of confinement effects on the Raman spectra of Si nanocrystals. , 2010, Physical review letters.

[21]  Edmund Atkinson,et al.  A Treatise on Electricity and Magnetism, Vol. 1 , 2010 .

[22]  Lorenzo Pavesi,et al.  Silicon Nanocrystals Fundamentals Synthesis and Applications , 2010 .

[23]  M. White,et al.  Temperature Dependence of Thermal Conductivity Enhancement in Single-walled Carbon Nanotube/polystyrene Composites , 2010 .

[24]  W. Winfree,et al.  Dispersion behaviour, thermal and electrical conductivities of carbon nanotube-polystyrene nanocomposites , 2008 .

[25]  Donald J. Cleland,et al.  A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases , 2008 .

[26]  S. Wada,et al.  Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis , 2008 .

[27]  Ken Okazaki,et al.  Microplasma synthesis of tunable photoluminescent silicon nanocrystals , 2007 .

[28]  J. Morikawa,et al.  Thermal diffusivity of polyolefins by temperature wave analysis , 2006 .

[29]  J. Morikawa,et al.  Thermal diffusivity measurement of low-k dielectric thin film by temperature wave analysis , 2005 .

[30]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[31]  F. Takahashi,et al.  Characterization of Heat Conduction in a Polymer Film , 2004 .

[32]  N. Koshida,et al.  Precise Thermal Characterization of Confined Nanocrystalline Silicon by a 3ω Method , 2004 .

[33]  Alexander A. Balandin,et al.  Nanoscale thermal management , 2002 .

[34]  Vladimir Lysenko,et al.  Thermal isolation in microsystems with porous silicon , 2002 .

[35]  T. Hashimoto,et al.  Thermophysical Properties of Poly(propylene)-based Composite Polymer , 2001 .

[36]  Seungmin Lee,et al.  Interface thermal conductance and the thermal conductivity of multilayer thin films , 2000 .

[37]  J. Morikawa,et al.  Thermal Diffusivity Measurement of Polyamide Mesh by Temperature Wave Analysis1 , 2000 .

[38]  Kenneth E. Goodson,et al.  Phonon scattering in silicon films with thickness of order 100 nm , 1999 .

[39]  I. Gregora,et al.  Applicability of Raman scattering for the characterization of nanocrystalline silicon , 1999 .

[40]  J. Morikawa,et al.  Frequency dependent thermal diffusivity of polymers by temperature wave analysis , 1997 .

[41]  J. Morikawa,et al.  Study on thermal diffusivity of poly(ethylene terephthalate) and poly(ethylene naphthalate) , 1997 .

[42]  J. Morikawa,et al.  Measurement of the thermal diffusivity of thin films by an AC joule-heating method , 1997 .

[43]  T. Hales The status of the kepler conjecture , 1994 .

[44]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[45]  Kenneth E. Goodson,et al.  Heat Transfer Regimes in Microstructures , 1992 .

[46]  Davidson,et al.  Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0 , 1989, Physical review. B, Condensed matter.

[47]  H. F. Shurvell,et al.  Introduction to Organic Spectroscopy , 1987 .

[48]  D. Mckenzie Infrared absorption and bonding in amorphous hydrogenated silicon-carbon alloys , 1985 .

[49]  T. Veijola Chapter Fourteen – Gas Damping in Vibrating MEMS Structures , 2010 .

[50]  Veikko Lindroos,et al.  Handbook of Silicon Based MEMS Materials and Technologies , 2020 .

[51]  R. Tye,et al.  A new apparatus for thermal diffusivity and specific heat measurements of films and liquids by means of Fourier transform thermal analysis , 2002 .

[52]  J. Morikawa,et al.  Simultaneous measurement of thermal diffusivity, heat capacity, and thermal conductivity by Fourier transform thermal analysis , 2001 .

[53]  A. Balandin Thermal Properties of Semiconductor Low-Dimensional Structures , 2000 .

[54]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.