CellNet: Network Biology Applied to Stem Cell Engineering

[1]  H. Weintraub,et al.  Expression of a single transfected cDNA converts fibroblasts to myoblasts , 1987, Cell.

[2]  AC Tose Cell , 1993, Cell.

[3]  A. Strain Isolated hepatocytes: use in experimental and clinical hepatology. , 1994, Gut.

[4]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[5]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[6]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[7]  T. Graf,et al.  Stepwise Reprogramming of B Cells into Macrophages , 2004, Cell.

[8]  R. Tibshirani,et al.  On testing the significance of sets of genes , 2006, math/0610667.

[9]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[10]  E. Davidson,et al.  Gene Regulatory Networks and the Evolution of Animal Body Plans , 2006, Science.

[11]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[12]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[13]  S. Nishikawa,et al.  Embryonic stem-cell culture as a tool for developmental cell biology , 2007, Nature Reviews Molecular Cell Biology.

[14]  Martin Rosvall,et al.  An information-theoretic framework for resolving community structure in complex networks , 2007, Proceedings of the National Academy of Sciences.

[15]  A. Consiglio,et al.  Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes , 2008, Nature Biotechnology.

[16]  Gordon Keller,et al.  Differentiation of Embryonic Stem Cells to Clinically Relevant Populations: Lessons from Embryonic Development , 2008, Cell.

[17]  Douglas A. Melton,et al.  In vivo reprogramming of adult pancreatic exocrine cells to β-cells , 2008, Nature.

[18]  A. McCallion,et al.  Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes. , 2008, The Journal of clinical investigation.

[19]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[20]  Marcos J. Araúzo-Bravo,et al.  Oct4-Induced Pluripotency in Adult Neural Stem Cells , 2009, Cell.

[21]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[22]  Manuel B. Graeber,et al.  PGC-1α, A Potential Therapeutic Target for Early Intervention in Parkinson’s Disease , 2010, Science Translational Medicine.

[23]  G. Church,et al.  Reprogramming of T cells from human peripheral blood. , 2010, Cell stem cell.

[24]  Thomas Vierbuchen,et al.  Direct conversion of fibroblasts to functional neurons by defined factors , 2010, Nature.

[25]  R. Jaenisch,et al.  Reprogramming of human peripheral blood cells to induced pluripotent stem cells. , 2010, Cell stem cell.

[26]  V. Vedantham,et al.  Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors , 2010, Cell.

[27]  A. Schnerch,et al.  Direct conversion of human fibroblasts to multilineage blood progenitors , 2010, Nature.

[28]  H. Parkinson,et al.  A global map of human gene expression , 2010, Nature Biotechnology.

[29]  Peter N. Murakami,et al.  Assessing affymetrix GeneChip microarray quality , 2011, BMC Bioinformatics.

[30]  Aaron M. Newman,et al.  Lab-specific gene expression signatures in pluripotent stem cells. , 2010, Cell stem cell.

[31]  Alexei A. Sharov,et al.  Generation of mouse ES cell lines engineered for the forced induction of transcription factors , 2011, Scientific reports.

[32]  Maria Teresa Dell'Anno,et al.  Direct generation of functional dopaminergic neurons from mouse and human fibroblasts , 2011, Nature.

[33]  Yong Liu,et al.  PKA phosphorylation couples hepatic inositol-requiring enzyme 1α to glucagon signaling in glucose metabolism , 2011, Proceedings of the National Academy of Sciences.

[34]  N. Friedman,et al.  Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis , 2011, Cell.

[35]  J. Carroll,et al.  Pioneer transcription factors: establishing competence for gene expression. , 2011, Genes & development.

[36]  L. Hui,et al.  Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors , 2011, Nature.

[37]  Xiaoxia Qi,et al.  Heart repair by reprogramming non-myocytes with cardiac transcription factors , 2012, Nature.

[38]  S. Banerjee,et al.  A proteomic view of isoproterenol induced cardiac hypertrophy: Prohibitin identified as a potential biomarker in rats , 2013, Journal of Translational Medicine.

[39]  Philip Cayting,et al.  An encyclopedia of mouse DNA elements (Mouse ENCODE) , 2012, Genome Biology.

[40]  関谷 明香,et al.  Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors , 2012 .

[41]  P. Moore,et al.  Multifaceted role of nitric oxide in an in vitro mouse neuronal injury model: transcriptomic profiling defines the temporal recruitment of death signalling cascades , 2011, Journal of cellular and molecular medicine.

[42]  Lee E. Edsall,et al.  A map of the cis-regulatory sequences in the mouse genome , 2012, Nature.

[43]  Li Qian,et al.  In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes , 2011, Nature.

[44]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[45]  M. Jeschke Faculty Opinions recommendation of PKA phosphorylation couples hepatic inositol-requiring enzyme 1alpha to glucagon signaling in glucose metabolism. , 2012 .

[46]  Mikhail Pachkov,et al.  Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting , 2013, Genome research.

[47]  Li Qian,et al.  Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State , 2013, Stem cell reports.

[48]  S. Hwang,et al.  Bacteria activate sensory neurons that modulate pain and inflammation , 2013, Nature.

[49]  Avi Ma'ayan,et al.  ESCAPE: database for integrating high-content published data collected from human and mouse embryonic stem cells , 2013, Database J. Biol. Databases Curation.

[50]  A. Brazma,et al.  Reuse of public genome-wide gene expression data , 2012, Nature Reviews Genetics.

[51]  P. Cahan,et al.  Origins and implications of pluripotent stem cell variability and heterogeneity , 2013, Nature Reviews Molecular Cell Biology.

[52]  James J Collins,et al.  Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. , 2013, Cell stem cell.

[53]  Howard Y. Chang,et al.  Hierarchical Mechanisms for Direct Reprogramming of Fibroblasts to Neurons , 2013, Cell.

[54]  N. Bursac,et al.  Transcription Factors MYOCD, SRF, Mesp1 and SMARCD3 Enhance the Cardio-Inducing Effect of GATA4, TBX5, and MEF2C during Direct Cellular Reprogramming , 2013, PloS one.

[55]  Samantha A. Morris,et al.  Dissecting Engineered Cell Types and Enhancing Cell Fate Conversion via CellNet , 2014, Cell.

[56]  S. Orkin,et al.  Reprogramming Committed Murine Blood Cells to Induced Hematopoietic Stem Cells with Defined Factors , 2014, Cell.