An [FeIII 34] Molecular Metal Oxide

Abstract The dissolution of anhydrous iron bromide in a mixture of pyridine and acetonitrile, in the presence of an organic amine, results in the formation of an [Fe34] metal oxide molecule, structurally characterised by alternate layers of tetrahedral and octahedral FeIII ions connected by oxide and hydroxide ions. The outer shell of the complex is capped by a combination of pyridine molecules and bromide ions. Magnetic data, measured at temperatures as low as 0.4 K and fields up to 35 T, reveal competing antiferromagnetic exchange interactions; DFT calculations showing that the magnitudes of the coupling constants are highly dependent on both the Fe‐O‐Fe angles and Fe−O distances. The simplicity of the synthetic methodology, and the structural similarity between [Fe34], bulk iron oxides, previous FeIII–oxo cages, and polyoxometalates (POMs), hints that much larger molecular FeIII oxides can be made.

[1]  G. Rajaraman,et al.  A simple methodology for constructing ferromagnetically coupled Cr(iii) compounds. , 2018, Dalton transactions.

[2]  E. Colacio,et al.  Magneto-Structural Properties and Theoretical Studies of a Family of Simple Heterodinuclear Phenoxide/Alkoxide Bridged MnIIILnIII Complexes: On the Nature of the Magnetic Exchange and Magnetic Anisotropy. , 2018, Inorganic chemistry.

[3]  Annette Rompel,et al.  Synthesis, structures and applications of electron-rich polyoxometalates , 2018 .

[4]  N. Bandeira,et al.  Magneto-Structural Analysis of Iron(III) Keggin Polyoxometalates. , 2017, The journal of physical chemistry. A.

[5]  A. Bousseksou,et al.  An {Fe60} tetrahedral cage: building nanoscopic molecular assemblies through cyanometallate and alkoxo linkers. , 2016, Dalton transactions.

[6]  P. Molina,et al.  Chemical Stabilization and Electrochemical Destabilization of the Iron Keggin Ion in Water. , 2016, Inorganic chemistry.

[7]  Olaf Nachtigall,et al.  Ein [Fe19]‐“Super‐Lindqvist”‐Aggregat und ein großes, sich durchdringendes, dreidimensionales Koordinationspolymer aus Solvothermalreaktionen von [Fe2(OtBu)6] mit Ethanol , 2015 .

[8]  W. Wernsdorfer,et al.  [Fe19 ] "Super-Lindqvist" Aggregate and Large 3D Interpenetrating Coordination Polymer from Solvothermal Reactions of [Fe2 (OtBu)6 ] with Ethanol. , 2015, Angewandte Chemie.

[9]  L. Zakharov,et al.  Aqueous formation and manipulation of the iron-oxo Keggin ion , 2015, Science.

[10]  Tetsuya Nakamura,et al.  A ferromagnetically coupled Fe42 cyanide-bridged nanocage , 2015, Nature Communications.

[11]  Leroy Cronin,et al.  Polyoxometalates: building blocks for functional nanoscale systems. , 2010, Angewandte Chemie.

[12]  Leroy Cronin,et al.  Polyoxometallate als Bausteine für funktionelle Nanosysteme , 2010 .

[13]  J. Schnack Effects of frustration on magnetic molecules: a survey from Olivier Kahn until today. , 2009, Dalton transactions.

[14]  Song Gao,et al.  A 64-nuclear cubic cage incorporating propeller-like Fe(III)8 apices and HCOO- edges. , 2008, Journal of the American Chemical Society.

[15]  O. Moze,et al.  From single-molecule magnetism to long-range ferromagnetism in Hpyr[Fe 17O16(OH)12(py)12Br4]Br4 , 2008 .

[16]  E. Brechin,et al.  Synthesis and magnetic properties of heptadecametallic Fe(III) clusters , 2007 .

[17]  P. Wood,et al.  Tunable dipolar magnetism in high-spin molecular clusters. , 2006, Physical review letters.

[18]  A. Caneschi,et al.  Static and dynamic magnetic properties of an †Fe13‡ cluster , 2006 .

[19]  W. Wernsdorfer,et al.  Building molecular minerals: all ferric pieces of molecular magnetite. , 2004, Angewandte Chemie.

[20]  E. McInnes,et al.  Solvothermal synthesis of a tetradecametallic FeIII cluster. , 2003, Angewandte Chemie.

[21]  Joan Cano,et al.  About the calculation of exchange coupling constants in polynuclear transition metal complexes , 2003, J. Comput. Chem..

[22]  S. Lippard,et al.  Synthesis and Structure of [Fe13O4F24(OMe)12]5-: The First Open-Shell Keggin Ion , 2002 .

[23]  Achim Müller,et al.  Inorganic chemistry goes protein size: a Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking. , 2002, Angewandte Chemie.

[24]  L. Cattolico,et al.  Improving Escherichia coli Alkaline Phosphatase Efficacy by Additional Mutations inside and outside the Catalytic Pocket , 2001, Chembiochem : a European journal of chemical biology.

[25]  H. Weihe,et al.  Magneto-Structural Correlations in Linear and Bent Oxo-Bridged Transition-Metal Dimers: Comparisons, Interpretations, and Predictions of Ground-State Magnetic Properties , 1998 .

[26]  Achim Müller,et al.  [Mo154(NO)14O420(OH)28(H2O)70](25 ± 5)−: A Water‐Soluble Big Wheel with More than 700 Atoms and a Relative Molecular Mass of About 24000 , 1995 .

[27]  Achim Müller,et al.  [Mo154(NO)14O420(OH)28(H2O)70](25 ± 5)−: ein wasserlösliches Riesenrad mit mehr als 700 Atomen und einer relativen Molekülmasse von ca. 24000 , 1995 .

[28]  M. T. Pope,et al.  Heteropoly and Isopoly Oxometalates , 1983 .

[29]  L. Cronin,et al.  Polyoxometalates: Synthesis and Structure – From Building Blocks to Emergent Materials , 2013 .

[30]  Leroy Cronin,et al.  Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. , 2007, Chemical Society reviews.

[31]  M. Exler,et al.  Probing spin frustration in high-symmetry magnetic nanomolecules by inelastic neutron scattering , 2006 .

[32]  E. Ruiz Theoretical Study of the Exchange Coupling in Large Polynuclear Transition Metal Complexes Using DFT Methods , 2004 .