Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography.

[1]  B. Yoo,et al.  Long-Term Reproducibility of Macular Ganglion Cell Analysis in Clinically Stable Glaucoma Patients. , 2015, Investigative ophthalmology & visual science.

[2]  J. Schuman,et al.  Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography , 2015, British Journal of Ophthalmology.

[3]  J. Schuman,et al.  Advanced imaging for glaucoma study: design, baseline characteristics, and inter-site comparison. , 2015, American journal of ophthalmology.

[4]  Robert Ritch,et al.  A Test of a Model of Glaucomatous Damage of the Macula With High-Density Perimetry: Implications for the Locations of Visual Field Test Points. , 2014, Translational vision science & technology.

[5]  R. Ritch,et al.  Risk Calculation Variability Over Time in Ocular Hypertensive Subjects , 2014, Journal of glaucoma.

[6]  Tien Yin Wong,et al.  Diagnostic Performance of the ISNT Rule for Glaucoma Based on the Heidelberg Retinal Tomograph. , 2013, Translational vision science & technology.

[7]  N. Maeda,et al.  Reproducibility of thickness measurements of macular inner retinal layers using SD-OCT with or without correction of ocular rotation. , 2013, Investigative ophthalmology & visual science.

[8]  Robert N Weinreb,et al.  The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. , 2012, Investigative ophthalmology & visual science.

[9]  Jean-Claude Mwanza,et al.  Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. , 2012, Ophthalmology.

[10]  Lindsey S. Folio,et al.  Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point , 2011, British Journal of Ophthalmology.

[11]  Gadi Wollstein,et al.  Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis , 2010, British Journal of Ophthalmology.

[12]  G. Holló,et al.  Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. , 2010, Ophthalmology.

[13]  J. D. Cascajosa,et al.  Detection of Macular Ganglion Cell Loss in Glaucoma by Fourier-Domain Optical Coherence Tomography , 2010 .

[14]  N. Loewen Ophthalmic Surgical Procedures. , 2009, Journal of glaucoma.

[15]  R. D'Agostino,et al.  Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. , 2007, Ophthalmology.

[16]  J. Crowston,et al.  Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma. , 2005, Archives of ophthalmology.

[17]  J. Beiser,et al.  Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. , 2005, Archives of ophthalmology.

[18]  M. B. Shields,et al.  PREDICTIVE FACTORS FOR GLAUCOMATOUS VISUAL FIELD PROGRESSION IN THE ADVANCED GLAUCOMA INTERVENTION STUDY , 2005 .

[19]  Chris A. Johnson,et al.  The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[20]  Jost B Jonas,et al.  Neuroretinal rim width ratios in morphological glaucoma diagnosis , 1998, The British journal of ophthalmology.

[21]  L. J. Wei,et al.  The Robust Inference for the Cox Proportional Hazards Model , 1989 .

[22]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[23]  D.,et al.  Regression Models and Life-Tables , 2022 .