Residual-Guided Look-Ahead in AND/OR Search for Graphical Models

We introduce the concept of local bucket error for the mini-bucket heuristics and show how it can be used to improve the power of AND/OR search for combinatorial optimization tasks in graphical models (e.g. MAP/MPE or weighted CSPs). The local bucket error illuminates how the heuristic errors are distributed in the search space, guided by the mini-bucket heuristic. We present and analyze methods for compiling the local bucket-errors (exactly and approximately) and show that they can be used to yield an effective tool for balancing look-ahead overhead during search. This can be especially instrumental when memory is restricted, accommodating the generation of only weak compiled heuristics. We illustrate the impact of the proposed schemes in an extensive empirical evaluation for both finding exact solutions and anytime suboptimal solutions.

[1]  Roni Stern,et al.  Using Lookaheads with Optimal Best-First Search , 2010, AAAI.

[2]  Rina Dechter Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms , 2013, Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms.

[3]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  R. Dechter,et al.  Winning the PASCAL 2011 MAP Challenge with Enhanced AND / OR Branch-and-Bound , 2011 .

[5]  Adnan Darwiche,et al.  Modeling and Reasoning with Bayesian Networks , 2009 .

[6]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[7]  Roni Stern,et al.  A* with Lookahead Re-Evaluated , 2014, SOCS.

[8]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[9]  William Ming Lam,et al.  Advancing Heuristics for Search over Graphical Models , 2017 .

[10]  Rina Dechter,et al.  AND/OR Branch-and-Bound search for combinatorial optimization in graphical models , 2009, Artif. Intell..

[11]  Dan Geiger,et al.  Optimizing exact genetic linkage computations , 2003, RECOMB '03.

[12]  Blai Bonet,et al.  A Concise Introduction to Models and Methods for Automated Planning , 2013, A Concise Introduction to Models and Methods for Automated Planning.

[13]  Javier Larrosa,et al.  Semiring-Based Mini-Bucket Partitioning Schemes , 2013, IJCAI.

[14]  Rina Dechter,et al.  Branch and Bound with Mini-Bucket Heuristics , 1999, IJCAI.

[15]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[16]  Rina Dechter,et al.  Bucket Elimination: A Unifying Framework for Reasoning , 1999, Artif. Intell..

[17]  Rina Dechter,et al.  Mini-buckets: a general scheme for approximating inference , 2002 .

[18]  Umberto Bertelè,et al.  Nonserial Dynamic Programming , 1972 .

[19]  Lars Otten,et al.  Anytime AND/OR depth-first search for combinatorial optimization , 2011, AI Commun..

[20]  Vincent Vidal,et al.  A Lookahead Strategy for Heuristic Search Planning , 2004, ICAPS.

[21]  Rina Dechter,et al.  Memory intensive AND/OR search for combinatorial optimization in graphical models , 2009, Artif. Intell..

[22]  Hilbert J. Kappen,et al.  Inference in the Promedas Medical Expert System , 2007, AIME.

[23]  John W. L. Ogilvie,et al.  Heuristics: Intelligent Search Strategies for Com- Puter Problem , 2001 .

[24]  Lars Otten,et al.  Join-graph based cost-shifting schemes , 2012, UAI.

[25]  Rina Dechter,et al.  AND/OR search spaces for graphical models , 2007, Artif. Intell..

[26]  Rina Dechter,et al.  The Relationship Between AND / OR Search Spaces and Variable Elimination , 2005 .

[27]  Yair Weiss,et al.  Minimizing and Learning Energy Functions for Side-Chain Prediction , 2007, RECOMB.