Partitioning mathematical programs for parallel solution 1

This paper describes heuristics for partitioning a general M x N matrix into arrowhead form. Such heuristics are useful for decomposing large, constrained, optimization problems into forms that are amenable to parallel processing. The heuristics presented can be easily implemented using publicly available graph partitioning algorithms. The application of such techniques for solving large linear programs is described. Extensive computational results on the effectiveness of our partitioning procedures and their usefulness for parallel optimization are presented. @ 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

[1]  John M. Mulvey,et al.  A diagonal quadratic approximation method for large scale linear programs , 1992, Oper. Res. Lett..

[2]  Robert R. Meyer,et al.  An Interior Point Method for Block Angular Optimization , 1991, SIAM J. Optim..

[3]  Deepankar Medhi Decomposition of structured large-scale optimization problems and parallel optimization , 1987 .

[4]  Michael C. Ferris,et al.  Parallel Variable Distribution , 1994, SIAM J. Optim..

[5]  J. L. Nazareth Computer solution of linear programs , 1987 .

[6]  E. Ng,et al.  Predicting structure in nonsymmetric sparse matrix factorizations , 1993 .

[7]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[8]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[9]  Robert Mifflin,et al.  A stable method for solving certain constrained least squares problems , 1979, Math. Program..

[10]  Yurii Nesterov,et al.  New variants of bundle methods , 1995, Math. Program..

[11]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[12]  D. Medhi Parallel bundle-based decomposition for large-scale structured mathematical programming problems , 1990 .

[13]  James K. Ho,et al.  Decomposition of linear programs using parallel computation , 1988, Math. Program..

[14]  A. George An automatic one-way dissection algorithm for irregular finite element problems , 1978 .

[15]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[16]  Stephen M. Robinson Bundle-based decomposition: Description and preliminary results , 1986 .

[17]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[18]  Richard V. Helgason,et al.  A parallelization of the simplex method , 1988 .

[19]  John K. Reid,et al.  A sparsity-exploiting variant of the Bartels—Golub decomposition for linear programming bases , 1982, Math. Program..

[20]  C. Lemaréchal,et al.  ON A BUNDLE ALGORITHM FOR NONSMOOTH OPTIMIZATION , 1981 .

[21]  Jeffery L. Kennington,et al.  An Empirical Evaluation of the KORBX® Algorithms for Military Airlift Applications , 1990, Oper. Res..

[22]  Bruce Hendrickson,et al.  A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[23]  Stephen M. Robinson Bundle-Based Decomposition: Conditions for Convergence , 1989 .

[24]  M C Ferris,et al.  Parallel Constraint Distribution , 1991, SIAM J. Optim..