A Python library for exploratory data analysis on twitter data based on tokens and aggregated origin-destination information

[1]  冯利芳 Facebook , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[2]  Shalini Priya,et al.  TAQE: Tweet Retrieval-Based Infrastructure Damage Assessment During Disasters , 2020, IEEE Transactions on Computational Social Systems.

[3]  Gisele L. Pappa,et al.  Traffic observatory: a system to detect and locate traffic events and conditions using Twitter , 2012, LBSN '12.

[4]  Scott A. Hale,et al.  Estimating local commuting patterns from geolocated Twitter data , 2017, EPJ Data Science.

[5]  Xiangfeng Luo,et al.  Discovering the core semantics of event from social media , 2016, Future Gener. Comput. Syst..

[6]  Daniela Moctezuma,et al.  A Simple Approach to Multilingual Polarity Classification in Twitter , 2016, Pattern Recognit. Lett..

[7]  Xiaomo Liu,et al.  Reuters Tracer: A Large Scale System of Detecting & Verifying Real-Time News Events from Twitter , 2016, CIKM.

[8]  H. Roberts Using Twitter data in urban green space research: A case study and critical evaluation , 2017 .

[9]  Tao Wang,et al.  Characterizing the Propagation of Situational Information in Social Media During COVID-19 Epidemic: A Case Study on Weibo , 2020, IEEE Transactions on Computational Social Systems.

[10]  David Sanchez,et al.  Dialectometric analysis of language variation in Twitter , 2017, VarDial.

[11]  Paige Maas,et al.  Facebook Disaster Maps: Aggregate Insights for Crisis Response & Recovery , 2019, ISCRAM.

[12]  Jiajun Liu,et al.  Understanding Human Mobility from Twitter , 2014, PloS one.

[13]  PAPPA , 2019, Springer Reference Medizin.

[14]  Sarah Vieweg,et al.  Processing Social Media Messages in Mass Emergency , 2014, ACM Comput. Surv..

[15]  Barbara Poblete,et al.  Nowcasting earthquake damages with Twitter , 2019, EPJ Data Science.

[16]  Shalini Priya,et al.  Identifying Infrastructure Damage during Earthquake using Deep Active Learning , 2019, 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[17]  Sarah Vieweg,et al.  Situational Awareness in Mass Emergency: A Behavioral and Linguistic Analysis of Microblogged Communications , 2012 .

[18]  Rajdeep Niyogi,et al.  Discovering Popular Events on Twitter , 2016, ICCSA.

[19]  Zvonimir Poljak,et al.  The Assessment of Twitter’s Potential for Outbreak Detection: Avian Influenza Case Study , 2019, Scientific Reports.