Onsager's Conjecture and Anomalous Dissipation on Domains with Boundary

We give a localized regularity condition for energy conservation of weak solutions of the Euler equations on a domain $\Omega\subset \mathbb{R}^d$, $d\ge 2$, with boundary. In the bulk of fluid, we assume Besov regularity of the velocity $u\in L^3(0,T;B_{3}^{1/3, c_0})$. On an arbitrary thin neighborhood of the boundary, we assume boundedness of velocity and pressure and, at the boundary, we assume continuity of wall-normal velocity. We also prove two theorems which establish that the global viscous dissipation vanishes in the inviscid limit for Leray--Hopf solutions $u^\nu$ of the Navier--Stokes equations under the similar assumptions, but holding uniformly in a thin boundary layer of width $O(\nu^{\min\{1,\frac{1}{2(1-\sigma)}\}})$ when $u\in L^3(0, T; B_3^{\sigma, c_0})$ in the interior for any $\sigma\in [1/3,1]$. The first theorem assumes continuity of the velocity in the boundary layer, whereas the second assumes a condition on the vanishing of energy dissipation within the layer. In both cases, str...

[1]  Vlad Vicol,et al.  Onsager's Conjecture for Admissible Weak Solutions , 2017, Communications on Pure and Applied Mathematics.

[2]  F. Anselmet,et al.  High-order velocity structure functions in turbulent shear flows , 1984, Journal of Fluid Mechanics.

[3]  Darryl D. Holm,et al.  Commutator errors in large-eddy simulation , 2002, Journal of Physics A: Mathematical and General.

[4]  Edriss S. Titi,et al.  Onsager’s Conjecture for the Incompressible Euler Equations in Bounded Domains , 2017, 1707.03115.

[5]  Emil Wiedemann,et al.  Onsager’s Conjecture with Physical Boundaries and an Application to the Vanishing Viscosity Limit , 2018, Communications in Mathematical Physics.

[6]  Review of the Onsager "Ideal Turbulence" Theory , 2018, 1803.02223.

[7]  Tosio Kato,et al.  Remarks on Zero Viscosity Limit for Nonstationary Navier- Stokes Flows with Boundary , 1984 .

[8]  Theodore D. Drivas,et al.  An Onsager singularity theorem for Leray solutions of incompressible Navier–Stokes , 2017, Nonlinearity.

[9]  L. Shao,et al.  The decay of turbulence in a bounded domain , 2002 .

[10]  Vlad Vicol,et al.  Remarks on the Inviscid Limit for the Navier-Stokes Equations for Uniformly Bounded Velocity Fields , 2015, SIAM J. Math. Anal..

[11]  R. Shvydkoy Lectures on the Onsager conjecture , 2010 .

[12]  Bernardus J. Geurts,et al.  Commutator errors in the filtering approach to large-eddy simulation , 2005 .

[13]  Vlad Vicol,et al.  Remarks on High Reynolds Numbers Hydrodynamics and the Inviscid Limit , 2017, J. Nonlinear Sci..

[14]  Cao,et al.  Asymmetry of Velocity Increments in Fully Developed Turbulence and the Scaling of Low-Order Moments. , 1996, Physical review letters.

[15]  L. Onsager,et al.  Statistical hydrodynamics , 1949 .

[16]  G. Eyink Besov spaces and the multifractal hypothesis , 1995 .

[17]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[18]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[19]  K. Sreenivasan On the scaling of the turbulent energy dissipation rate , 1984 .

[20]  Kai Schneider,et al.  Energy dissipating structures produced by walls in two-dimensional flows at vanishing viscosity. , 2011, Physical review letters.

[21]  M. L. Filho,et al.  Energy Conservation in Two-dimensional Incompressible Ideal Fluids , 2016 .

[22]  Y. Giga,et al.  Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains(Evolution Equations and Applications to Nonlinear Problems) , 1990 .

[23]  Jianchun Wang,et al.  Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows , 2012, Journal of Fluid Mechanics.

[24]  J. Duistermaat,et al.  Multidimensional Real Analysis I: Differentiation , 2004 .

[25]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[26]  Philip Isett Nonuniqueness and Existence of Continuous, Globally Dissipative Euler Flows , 2017, Archive for Rational Mechanics and Analysis.

[27]  Th. von Kármán Mechanische Aenlichkeit und Turbulenz , 1930 .

[28]  L. Escauriaza,et al.  Some remarks on the Lp regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition , 2016, 1606.05577.

[29]  Philip Isett,et al.  A Proof of Onsager's Conjecture , 2016, 1608.08301.

[30]  Emil Wiedemann,et al.  Weak-Strong Uniqueness in Fluid Dynamics , 2017, Partial Differential Equations in Fluid Mechanics.

[31]  B. Pearson,et al.  Measurements of the turbulent energy dissipation rate , 2002 .

[32]  C. Fureby,et al.  Mathematical and Physical Constraints on Large-Eddy Simulations , 1997 .

[33]  E Weinan,et al.  Onsager's conjecture on the energy conservation for solutions of Euler's equation , 1994 .

[34]  R. Panton Composite asymptotic expansions and scaling wall turbulence , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  A. Cheskidov,et al.  Energy conservation and Onsager's conjecture for the Euler equations , 2007, 0704.0759.

[36]  Wolf von Wahl,et al.  On the regularity of the pressure of weak solutions of Navier-Stokes equations , 1986 .

[37]  Raoul Robert,et al.  Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations , 2000 .

[38]  Gregory L. Eyink,et al.  Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer , 1994 .

[39]  Mitsuo Yokokawa,et al.  Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box , 2003 .

[40]  Y. Couder,et al.  Energy injection in closed turbulent flows: Stirring through boundary layers versus inertial stirring , 1997 .

[41]  Camillo De Lellis,et al.  The $h$-principle and the equations of fluid dynamics , 2011, 1111.2700.

[42]  Jmmy Alfonso Mauro ON THE REGULARITY PROPERTIES OF THE PRESSURE FIELD ASSOCIATED TO A HOPF WEAK SOLUTION TO THE NAVIER-STOKES EQUATIONS , 2017 .

[43]  S. Ghosal Mathematical and Physical Constraints on Large-Eddy Simulation of Turbulence , 1999 .

[44]  W. Tollmien,et al.  Zur turbulenten Strömung in Rohren und längs Platten , 1961 .

[45]  Katepalli R. Sreenivasan,et al.  An update on the energy dissipation rate in isotropic turbulence , 1998 .

[46]  Emil Wiedemann,et al.  Non-uniqueness for the Euler equations: the effect of the boundary , 2013, 1305.0773.

[47]  Camillo De Lellis,et al.  The Euler equations as a differential inclusion , 2007 .

[48]  G. S. Lewis,et al.  Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  Camillo De Lellis,et al.  On Admissibility Criteria for Weak Solutions of the Euler Equations , 2007, 0712.3288.

[50]  S. Orszag,et al.  Self-similar decay of three-dimensional homogeneous turbulence with hyperviscosity. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  Yoshikazu Giga,et al.  Abstract LP estimates for the Cauchy problem with applications to the Navier‐Stokes equations in exterior domains , 1991 .

[52]  Gregory L. Eyink,et al.  An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations , 2017, 1704.03409.