Bootstrap Percolation in High Dimensions

In r-neighbour bootstrap percolation on a graph G, a set of initially infected vertices A ⊂ V(G) is chosen independently at random, with density p, and new vertices are subsequently infected if they have at least r infected neighbours. The set A is said to percolate if eventually all vertices are infected. Our aim is to understand this process on the grid, [n]d, for arbitrary functions n = n(t), d = d(t) and r = r(t), as t → ∞. The main question is to determine the critical probability pc([n]d, r) at which percolation becomes likely, and to give bounds on the size of the critical window. In this paper we study this problem when r = 2, for all functions n and d satisfying d ≫ log n. The bootstrap process has been extensively studied on [n]d when d is a fixed constant and 2 ⩽ r ⩽ d, and in these cases pc([n]d, r) has recently been determined up to a factor of 1 + o(1) as n → ∞. At the other end of the scale, Balogh and Bollobas determined pc([2]d, 2) up to a constant factor, and Balogh, Bollobas and Morris determined pc([n]d, d) asymptotically if d ≥ (log log n)2+ϵ, and gave much sharper bounds for the hypercube. Here we prove the following result. Let λ be the smallest positive root of the equation \[\sum_{k=0}^\infty \frac{(-1)^k \lambda^k}{2^{k^2-k} k!} = 0,\] so λ ≈ 1.166. Then \[ \frac{16\lambda}{d^2} \biggl(1 + \frac{\log d}{\sqrt{d}} \biggr)\: 2^{-2\sqrt{d}} \leq p_c([2]^d,2) \leq \frac{16\lambda}{d^2} \biggl(1 + \frac{5(\log d)^2}{\sqrt{d}} \biggr) \: 2^{-2\sqrt{d}}\] if d is sufficiently large, and moreover \[p_c\bigl([n]^d,2 \bigr) = \bigl(4\lambda + o(1) \bigr) \biggl(\frac{n}{n-1} \biggr)^2 \, \frac{1}{d^2} \, 2^{-2\sqrt{d \log_2 n}}\] as d → ∞, for every function n = n(d) with d ≫ log n.

[1]  J. Gravner,et al.  A sharper threshold for bootstrap percolation in two dimensions , 2010, 1002.3881.

[2]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[3]  Emilio N.M. Cirillo,et al.  Finite Size Scaling in Three-Dimensional Bootstrap Percolation , 1998 .

[4]  F. Manzo,et al.  The Threshold Regime of Finite Volume Bootstrap Percolation , 2001 .

[5]  B. Bollob'as,et al.  Bootstrap percolation in three dimensions , 2008, 0806.4485.

[6]  G. D. Liveing,et al.  The University of Cambridge , 1897, British medical journal.

[7]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.

[8]  Béla Bollobás,et al.  Bootstrap percolation on the hypercube , 2006 .

[9]  H. Kesten,et al.  Inequalities with applications to percolation and reliability , 1985 .

[10]  Charles M. Newman,et al.  Dynamics of Ising spin systems at zero temperature , 2000 .

[11]  Remco van der Hofstad,et al.  Asymptotic expansions in n−1 for percolation critical values on the n‐Cube and ℤn , 2005, Random Struct. Algorithms.

[12]  D. L. Stein,et al.  Zero-temperature dynamics of Ising spin systems following a deep quench: results and open problems , 2000 .

[13]  R. Morris Zero-temperature Glauber dynamics on $${\mathbb{Z}^d}$$ , 2011 .

[14]  R. Schonmann,et al.  Stretched Exponential Fixation in Stochastic Ising Models at Zero Temperature , 2002 .

[15]  Béla Bollobás,et al.  Majority Bootstrap Percolation on the Hypercube , 2007, Combinatorics, Probability and Computing.

[16]  R. Schonmann On the Behavior of Some Cellular Automata Related to Bootstrap Percolation , 1992 .

[17]  P. Leath,et al.  Bootstrap percolation on a Bethe lattice , 1979 .

[18]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[19]  József Balogh,et al.  Bootstrap percolation on the random regular graph , 2007, Random Struct. Algorithms.

[20]  Joan Adler,et al.  Bootstrap Percolation: visualizations and applications , 2003 .

[21]  R. Schonmann,et al.  Bootstrap Percolation on Homogeneous Trees Has 2 Phase Transitions , 2008 .

[22]  H. Duminil-Copin,et al.  The sharp threshold for bootstrap percolation in all dimensions , 2010, 1010.3326.

[23]  Roberto H. Schonmann,et al.  Finite size scaling behavior of a biased majority rule cellular automaton , 1990 .

[24]  Yuval Peres,et al.  Bootstrap Percolation on Infinite Trees and Non-Amenable Groups , 2003, Combinatorics, Probability and Computing.

[25]  Svante Janson,et al.  On percolation in random graphs with given vertex degrees , 2008, 0804.1656.

[26]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[27]  Joel H. Spencer,et al.  Random Subgraphs Of Finite Graphs: III. The Phase Transition For The n-Cube , 2006, Comb..

[28]  Yoshiharu Kohayakawa,et al.  The Evaluation of Random Subgraphs of the Cube , 1992, Random Struct. Algorithms.

[29]  JO On a limit theorem in combinatorical analysis , 2001 .

[30]  Michael Aizenman,et al.  Metastability effects in bootstrap percolation , 1988 .

[31]  A. Holroyd Sharp metastability threshold for two-dimensional bootstrap percolation , 2002, math/0206132.

[32]  Alexander E. Holroyd,et al.  The Metastability Threshold for Modified Bootstrap Percolation in $d$ Dimensions , 2006 .

[33]  János Komlós,et al.  Largest random component of ak-cube , 1982, Comb..

[34]  Remco van der Hofstad,et al.  Expansion in ${\boldsymbol{n^{-1}}}$ for Percolation Critical Values on the $n$-cube and ${\boldsymbol{{\mathbb Z}^n}}$: the First Three Terms , 2006, Comb. Probab. Comput..

[35]  R. Morris Zero-temperature Glauber dynamics on Z^d , 2008, 0809.0353.

[36]  Béla Bollobás,et al.  Random Graphs , 1985 .

[37]  József Balogh,et al.  Random disease on the square grid , 1998, Random Struct. Algorithms.

[38]  J. Spencer,et al.  EVOLUTION OF THE n-CUBE , 1979 .