Weak Boundary Condition Enforcement for Linear Kirchhoff-Love Shells: Formulation, Error Analysis, and Verification

Stable and accurate modeling of thin shells requires proper enforcement of all types of boundary conditions. Unfortunately, for Kirchhoff-Love shells, strong enforcement of Dirichlet boundary conditions is difficult because both functional and derivative boundary conditions must be applied. A popular alternative is to employ Nitsche's method to weakly enforce all boundary conditions. However, while many Nitsche-based formulations have been proposed in the literature, they lack comprehensive error analyses and verifications. In fact, existing formulations are variationally inconsistent and yield sub-optimal convergence rates when used with common boundary condition specifications. In this paper, we present a novel Nitsche-based formulation for the linear Kirchhoff-Love shell that is provably stable and optimally convergent for general sets of admissible boundary conditions. To arrive at our formulation, we first present a framework for constructing Nitsche's method for any abstract variational constrained minimization problem. We then apply this framework to the linear Kirchhoff-Love shell and, for the particular case of NURBS-based isogeometric analysis, we prove that the resulting formulation yields optimal convergence rates in both the shell energy norm and the standard $L^2$-norm. In the process, we derive the Euler-Lagrange equations for general sets of admissible boundary conditions and show that the Euler-Lagrange boundary conditions typically presented in the literature is incorrect. We verify our formulation by manufacturing solutions for a new shell obstacle course that encompasses flat, parabolic, hyperbolic, and elliptic geometric configurations. These manufactured solutions allow us to robustly measure the error across the entire shell in contrast with current best practices where displacement and stress errors are only measured at specific locations.

[1]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[2]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[3]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[4]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[5]  D. Schöllhammer,et al.  Kirchhoff–Love shell theory based on tangential differential calculus , 2018, Computational Mechanics.

[6]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[7]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[8]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[9]  A. Lew,et al.  A discontinuous‐Galerkin‐based immersed boundary method , 2008 .

[10]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[11]  H. Nguyen-Xuan,et al.  Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling , 2017 .

[12]  A. M. A. Heijden,et al.  On modified boundary conditions for the free edge of a shell , 1976 .

[13]  W. T. Koiter,et al.  Foundations of shell theory , 1973 .

[14]  Alessandro Reali,et al.  Hierarchically refined isogeometric analysis of trimmed shells , 2020, Computational Mechanics.

[15]  L. M. MILNE-THOMSON,et al.  Vector and Tensor Analysis , 1949, Nature.

[16]  Ming-Chen Hsu,et al.  Penalty coupling of non-matching isogeometric Kirchhoff–Love shell patches with application to composite wind turbine blades , 2019, Computer Methods in Applied Mechanics and Engineering.

[17]  B. Miara,et al.  Asymptotic analysis of linearly elastic shells , 1996 .

[18]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[19]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[20]  Brummelen van Eh,et al.  Flux evaluation in primal and dual boundary-coupled problems , 2011 .

[21]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[22]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[23]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[24]  Isaac Harari,et al.  A unified approach for embedded boundary conditions for fourth‐order elliptic problems , 2015 .

[25]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[26]  Thomas J. R. Hughes,et al.  Variationally consistent isogeometric analysis of trimmed thin shells at finite deformations, based on the STEP exchange format , 2018, Computer Methods in Applied Mechanics and Engineering.

[27]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[28]  K. S. Lo,et al.  Computer analysis in cylindrical shells , 1964 .

[29]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[30]  Hector Gomez,et al.  Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells , 2017, Comput. Aided Des..

[31]  Sven Klinkel,et al.  Multi-patch isogeometric analysis for Kirchhoff–Love shell elements , 2019, Computer Methods in Applied Mechanics and Engineering.

[32]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[33]  Isaac Harari,et al.  Embedded kinematic boundary conditions for thin plate bending by Nitsche's approach , 2012 .

[34]  Peter Hansbo,et al.  A discontinuous Galerkin method¶for the plate equation , 2002 .

[35]  Yujie Guo,et al.  Weak Dirichlet boundary conditions for trimmed thin isogeometric shells , 2015, Comput. Math. Appl..

[36]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[37]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[38]  Roger A. Sauer,et al.  A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries , 2017 .

[39]  Carsten Graser,et al.  Discretization error estimates for penalty formulations of a linearized Canham-Helfrich type energy , 2017, 1703.06688.

[40]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[41]  John A. Evans,et al.  Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .

[42]  Ernst Rank,et al.  Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .

[43]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[44]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[45]  Roland Wüchner,et al.  Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures , 2015 .

[46]  R. Radovitzky,et al.  A new discontinuous Galerkin method for Kirchhoff–Love shells , 2008 .

[47]  Thomas J. R. Hughes,et al.  Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements , 2013, Numerische Mathematik.

[48]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[49]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[50]  Ellen Kuhl,et al.  Isogeometric Kirchhoff-Love shell formulations for biological membranes. , 2015, Computer methods in applied mechanics and engineering.

[51]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[52]  Helio J. C. Barbosa,et al.  The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .

[53]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[54]  Martin Ruess,et al.  Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures , 2015 .

[55]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[56]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[57]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[58]  Thomas Schick Manifolds with boundary and of bounded geometry , 2000 .

[59]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[60]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[61]  W. T. Koiter,et al.  ON THE MATHEMATICAL FOUNDATION OF SHELL THEORY , 2010 .

[62]  G. Burton Sobolev Spaces , 2013 .

[63]  Martin Schanz,et al.  Code verification examples based on the method of manufactured solutions for Kirchhoff–Love and Reissner–Mindlin shell analysis , 2017, Engineering with Computers.

[64]  John E. Dolbow,et al.  A robust Nitsche’s formulation for interface problems , 2012 .

[65]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[66]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[67]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[68]  Dominik Schillinger,et al.  A parameter-free variational coupling approach for trimmed isogeometric thin shells , 2017 .

[69]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[70]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[71]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[72]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[73]  Vinh Phu Nguyen,et al.  Nitsche’s method for two and three dimensional NURBS patch coupling , 2013, 1308.0802.

[74]  Roland Wüchner,et al.  Domain Decomposition Methods and Kirchhoff-Love Shell Multipatch Coupling in Isogeometric Analysis , 2015 .

[75]  Louis Jezequel,et al.  A C0/G1 multiple patches connection method in isogeometric analysis , 2015 .

[76]  Roland Wüchner,et al.  A Nitsche‐type formulation and comparison of the most common domain decomposition methods in isogeometric analysis , 2014 .

[77]  P. G. Ciarlet,et al.  An Introduction to Differential Geometry with Applications to Elasticity , 2006 .