Parallel Adaptive Mesh Refinement Scheme for Three-Dimensional Turbulent Non-Premixed Combustion

A parallel adaptive mesh refinement (AMR) algorithm is described for predicting turbulent non-premixed gaseous combusting flows in three space dimensions. The Favreaveraged Navier-Stokes equations governing a reactive mixture of thermally perfect gases, the two transport equations of the k-! turbulence model, and the time-averaged species transport equations, are all solved using a fully coupled finite-volume formulation on bodyfitted multi-block hexahedral mesh. The numerical algorithm adopts a cell-centred upwind finite-volume discretization procedure and uses limited solution reconstruction, approximate Riemann solver based flux functions to determine the inviscid (hyperbolic) flux at cell interfaces. The viscous (elliptic) components of the cell face flux are evaluated by employing a hybrid average gradient-diamond path approach. For the treatment of near-wall turbulence, both low-Reynolds-number and wall-function formulations of the k-! model are used, with a procedure for automatically switching from one to the other, depending on mesh resolution. A flexible block-based hierarchical octree data structure is used to maintain the connectivity of the solution blocks in the multi-block mesh and facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. This AMR approach allows for anisotropic mesh refinement and the block-based data structure readily permits efficient and scalable implementations of the algorithm on multi-processor architectures. Numerical results for turbulent non-premixed methane-air diffusion flames are described to demonstrate the validity and potential of the parallel AMR approach for predicting complex combusting flows.

[1]  P. Colella,et al.  An Adaptive Mesh Refinement Algorithm for the Radiative Transport Equation , 1998 .

[2]  Stephen B. Pope,et al.  PDF calculations of turbulent nonpremixed flames with local extinction , 2000 .

[3]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[4]  Philip L. Roe,et al.  Adaptive-mesh algorithms for computational fluid dynamics , 1993 .

[5]  John B. Bell,et al.  AMR for low Mach number reacting flow , 2005 .

[6]  Jan Vierendeels,et al.  Application of a New Cubic Turbulence Model to Piloted and Bluff-Body Diffusion Flames , 2001 .

[7]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[8]  Bassam B. Dally,et al.  Instantaneous and Mean Compositional Structure of Bluff-Body Stabilized Nonpremixed Flames , 1998 .

[9]  J. Laufer,et al.  The Structure of Turbulence in Fully Developed Pipe Flow , 1953 .

[10]  Bassam B. Dally,et al.  Flow and mixing fields of turbulent bluff-body jets and flames , 1998 .

[11]  Phillip Colella,et al.  Numerical Solution of Plasma Fluid Equations Using Locally Refined Grids , 1997 .

[12]  C. Wilke A Viscosity Equation for Gas Mixtures , 1950 .

[13]  T. Poinsot,et al.  Large-eddy simulation of turbulent combustion for gas turbines with reduced chemistry , 2022 .

[14]  S. Pope,et al.  Calculations of bluff-body stabilized flames using a joint probability density function model with detailed chemistry , 2005 .

[15]  Scott M. Murman,et al.  Applications of Space-Filling-Curves to Cartesian Methods for CFD , 2004 .

[16]  Quentin F. Stout,et al.  A parallel solution-adaptive scheme for ideal magnetohydrodynamics , 1999 .

[17]  John B. Bell,et al.  An Adaptive Projection Method for Unsteady, Low-Mach Number Combustion , 1998 .

[18]  J. Murthy,et al.  A PRESSURE-BASED METHOD FOR UNSTRUCTURED MESHES , 1997 .

[19]  Clinton P. T. Groth,et al.  Numerical Modeling of Micron-Scale Flows Using the Gaussian Moment Closure , 2005 .

[20]  Ann S. Almgren,et al.  A parallel adaptive projection method for low Mach number flows , 2002 .

[21]  Massimiliano Fatica,et al.  Stanford Center for Integrated Turbulence Simulations , 2000, Comput. Sci. Eng..

[22]  Marsha Berger,et al.  Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws , 1994, SIAM J. Sci. Comput..

[23]  Luc Vervisch,et al.  Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame , 2004 .

[24]  Marsha J. Berger,et al.  AMR on the CM-2 , 1994 .

[25]  Ann S. Almgren,et al.  Adaptive numerical simulation of turbulent premixed combustion , 2001 .

[26]  P. Colella,et al.  A CONSERVATIVE ADAPTIVE-MESH ALGORITHM FOR UNSTEADY, COMBINED-MODE HEAT TRANSFER USING THE DISCRETE ORDINATES METHOD , 1999 .

[27]  Scott Northrup,et al.  Solution of Laminar Combusting Flows Using a Parallel Implicit Adaptive Mesh Refinement Algorithm , 2009 .

[28]  James J. Quirk,et al.  A Parallel Adaptive Mesh Refinement Algorithm , 1993 .

[29]  Bassam B. Dally,et al.  The instantaneous spatial structure of the recirculation zone in bluff-body stabilized flames , 1998 .

[30]  B. Niceno An Unstructured Parallel Algorithm for Large Eddy and Conjugate Heat Transfer Simulations , 2001 .

[31]  Clinton P. T. Groth,et al.  High-Order Central ENO Finite-Volume Scheme with Adaptive Mesh Refinement , 2007 .

[32]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[33]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[34]  W. C. Gardiner,et al.  Introduction to Combustion Modeling , 1984 .

[35]  J. Ferziger,et al.  An adaptive multigrid technique for the incompressible Navier-Stokes equations , 1989 .

[36]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[37]  J. J. Quirk,et al.  An adaptive grid algorithm for computational shock hydrodynamics , 1991 .

[38]  T. Linde,et al.  A practical, general‐purpose, two‐state HLL Riemann solver for hyperbolic conservation laws , 2002 .

[39]  D. D. Zeeuw,et al.  Global three‐dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere , 2000 .

[40]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[41]  Ugo Piomelli,et al.  Large-eddy simulation: achievements and challenges , 1999 .

[42]  S. Cant High-performance computing in computational fluid dynamics: progress and challenges , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  Scott Northrup,et al.  Solution of Laminar Diffusion Flames Using a Parallel Adaptive Mesh Refinement Algorithm , 2005 .

[44]  Scott Northrup,et al.  Parallel Implicit Adaptive Mesh Refinement Scheme for Body-Fitted Multi-Block Mesh , 2005 .

[45]  G. Turpin,et al.  Validation of a two-equation turbulence model for axisymmetric reacting and non-reacting flows , 2000 .

[46]  D. Wilcox Turbulence modeling for CFD , 1993 .

[47]  J. Sachdev,et al.  A parallel solution-adaptive scheme for multi-phase core flows in solid propellant rocket motors , 2005 .

[48]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[49]  Bassam B. Dally,et al.  The structure of the recirculation zone of a bluff-body combustor , 1994 .

[50]  Clinton P. T. Groth,et al.  Parallel Adaptive Mesh Refinement Scheme for Turbulent Non-Premixed Combusting Flow Prediction , 2006 .

[51]  Robert W. Dibble,et al.  The structure of turbulent nonpremixed flames of methanol over a range of mixing rates , 1992 .

[52]  P. Colella,et al.  A Fast Adaptive Vortex Method in Three Dimensions , 1994 .

[53]  C. Westbrook,et al.  Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames , 1981 .

[54]  Timothy J. Barth,et al.  Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .

[55]  Donghyun You,et al.  Integrated RANS/LES computations of turbulent o w through a turbofan jet engine , 2006 .

[56]  Clinton P. T. Groth,et al.  International Journal of Computational Fluid Dynamics a Parallel Adaptive Mesh Refinement Algorithm for Predicting Turbulent Non-premixed Combusting Flows a Parallel Adaptive Mesh Refinement Algorithm for Predicting Turbulent Non-premixed Combusting Flows , 2022 .

[57]  Bram van Leer,et al.  Design of Optimally Smoothing Multi-Stage Schemes for the Euler Equations , 1989 .

[58]  Michael J. Aftosmis,et al.  Robust and efficient Cartesian mesh generation for component-based geometry , 1997 .

[59]  Robert W. Dibble,et al.  Raman-rayleigh measurements in bluff-body stabilised flames of hydrocarbon fuels , 1992 .

[60]  John B. Bell,et al.  Cartesian grid method for unsteady compressible flow in irregular regions , 1995 .

[61]  R. Fox Computational Models for Turbulent Reacting Flows , 2003 .

[62]  Clinton P. T. Groth,et al.  A Mesh Adjustment Scheme for Embedded Boundaries , 2006 .

[63]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[64]  M. Berger,et al.  Robust and efficient Cartesian mesh generation for component-based geometry , 1998 .