Thickness‐Dependent Optical Properties and In‐Plane Anisotropic Raman Response of the 2D β‐In2S3

[1]  C. D. Kartha,et al.  Modification of the optoelectronic properties of sprayed In2S3 thin films by indium diffusion for application as buffer layer in CZTS based solar cell , 2013 .

[2]  Yi Xie,et al.  Fabrication of flexible and freestanding zinc chalcogenide single layers , 2012, Nature Communications.

[3]  Chee Lip Gan,et al.  Synthesis of hexagonal close-packed gold nanostructures. , 2011, Nature communications.

[4]  J. Qiu,et al.  Band-edge electronic structure of β-In2S3: the role of s or p orbitals of atoms at different lattice positions. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  Debabrata Pradhan,et al.  Synthesis of In2S3 microspheres using a template-free and surfactant-less hydrothermal process and their visible light photocatalysis , 2014 .

[6]  P. Schwaller,et al.  Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.

[7]  R. Engelken,et al.  Progress in indium (III) sulfide (In2S3) buffer layer deposition techniques for CIS, CIGS, and CdTe-based thin film solar cells , 2015 .

[8]  M. Seong,et al.  Simple synthesis of ultra-high quality In2S3 thin films on InAs substrates , 2016 .

[9]  Lili Tao,et al.  Graphene/In2S3 van der Waals Heterostructure for Ultrasensitive Photodetection , 2018, ACS Photonics.

[10]  N. Barreau,et al.  Optical properties of large band gap β-In2S3−3xO3x compounds obtained by physical vapour deposition , 2005 .

[11]  K. Albe,et al.  Intrinsic point defects in β-In2S3 studied by means of hybrid density-functional theory , 2018 .

[12]  J. Bernède,et al.  Structural and Photoelectrical Properties of Sprayed β-In2S3 Thin Films , 2000 .

[13]  R. Bube,et al.  Photoconductivity in indium sulfide powders and crystals , 1959 .

[14]  Dennis Y.C. Leung,et al.  Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation , 2010 .

[15]  R. Uecker,et al.  On the nature and temperature dependence of the fundamental band gap of In2O3 , 2014 .

[16]  Guozhen Shen,et al.  Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. , 2015, Nanoscale.

[17]  Yu Zhao,et al.  Controllable growth of large-area atomically thin ReS2 films and their thickness-dependent optoelectronic properties , 2019, Applied Physics Letters.

[18]  Ching-Hwa Ho,et al.  Growth and characterization of near-band-edge transitions in β-In2S3 single crystals , 2010 .

[19]  A. Wei,et al.  Synthesis of In2S3 thin films directly onto conductive substrates via PVP-assisted microwave irradiation method , 2018 .

[20]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[21]  G. Wiederrecht,et al.  Photoexcited Carrier Dynamics of In2S3 Thin Films. , 2015, The journal of physical chemistry letters.

[22]  T. T. John,et al.  Defect analysis of sprayed β-In2S3 thin films using photoluminescence studies , 2005 .

[23]  M. Sotelo-Lerma,et al.  Structural and optical studies on thermal-annealed In2S3 films prepared by the chemical bath deposition technique , 2005 .

[24]  P. Srivastava,et al.  Electronic, optical and transport properties of α-, β- and γ-phases of spinel indium sulphide: An ab initio study , 2012 .

[25]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.