Functional analysis of the interface between the tandem C2 domains of synaptotagmin-1

Synaptotagmin (syt)-1 is a Ca2+ sensor that triggers rapid synaptic vesicle exocytosis. Mutations that disrupt physical interactions between the tandem Ca2+-sensing modules (C2 domains) of syt-1 disrupt regulated membrane fusion in reconstituted fusion reactions and in neurons. Hence contacts between these domains are important for function.

[1]  M. Bykhovskaia Calcium binding promotes conformational flexibility of the neuronal Ca(2+) sensor synaptotagmin. , 2015, Biophysical journal.

[2]  Y. Shin,et al.  Molecular origins of synaptotagmin 1 activities on vesicle docking and fusion pore opening , 2015, Scientific Reports.

[3]  Y. Shin,et al.  Synaptotagmin-1 Is an Antagonist for Munc18-1 in SNARE Zippering* , 2015, The Journal of Biological Chemistry.

[4]  E. Chapman,et al.  Linker mutations reveal the complexity of synaptotagmin 1 action during synaptic transmission , 2014, Nature Neuroscience.

[5]  J. Rizo,et al.  Prevalent mechanism of membrane bridging by synaptotagmin-1 , 2013, Proceedings of the National Academy of Sciences.

[6]  R B Sutton,et al.  Negative Coupling as a Mechanism for Signal Propagation between C2 Domains of Synaptotagmin I , 2012, PloS one.

[7]  R B Sutton,et al.  Mechanism for calcium ion sensing by the C2A domain of synaptotagmin I. , 2012, Biophysical journal.

[8]  K. North,et al.  Ferlins: Regulators of Vesicle Fusion for Auditory Neurotransmission, Receptor Trafficking and Membrane Repair , 2012, Traffic.

[9]  E. Chapman,et al.  Mechanism and function of synaptotagmin-mediated membrane apposition , 2011, Nature Structural &Molecular Biology.

[10]  E. Chapman,et al.  Otoferlin is a calcium sensor that directly regulates SNARE-mediated membrane fusion , 2010, The Journal of cell biology.

[11]  M. Jackson,et al.  Regulation of Exocytosis and Fusion Pores by Synaptotagmin-Effector Interactions , 2010, Molecular biology of the cell.

[12]  Axel T. Brunger,et al.  Molecular mechanism of the synaptotagmin–SNARE interaction in Ca2+-triggered vesicle fusion , 2010, Nature Structural &Molecular Biology.

[13]  Edwin R. Chapman,et al.  Synaptotagmin-Mediated Bending of the Target Membrane Is a Critical Step in Ca2+-Regulated Fusion , 2009, Cell.

[14]  R. Jahn,et al.  The Ca2+ Affinity of Synaptotagmin 1 Is Markedly Increased by a Specific Interaction of Its C2B Domain with Phosphatidylinositol 4,5-Bisphosphate , 2009, The Journal of Biological Chemistry.

[15]  E. Chapman,et al.  Synaptotagmin C2B Domain Regulates Ca2+-triggered Fusion in Vitro , 2008, Journal of Biological Chemistry.

[16]  E. Chapman,et al.  Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+ , 2008, Nature Structural &Molecular Biology.

[17]  Edwin R Chapman,et al.  How does synaptotagmin trigger neurotransmitter release? , 2008, Annual review of biochemistry.

[18]  R B Sutton,et al.  Structure of human synaptotagmin 1 C2AB in the absence of Ca2+ reveals a novel domain association. , 2007, Biochemistry.

[19]  M. Kozlov,et al.  How Synaptotagmin Promotes Membrane Fusion , 2007, Science.

[20]  Edwin R Chapman,et al.  Ca2+–synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion , 2006, Nature Structural &Molecular Biology.

[21]  T. Südhof,et al.  Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids , 2006, Nature Structural &Molecular Biology.

[22]  G. Augustine,et al.  Dual Roles of the C2B Domain of Synaptotagmin I in Synchronizing Ca2+-Dependent Neurotransmitter Release , 2004, The Journal of Neuroscience.

[23]  T. Weber,et al.  Reconstitution of Ca2+-Regulated Membrane Fusion by Synaptotagmin and SNAREs , 2004, Science.

[24]  M. Jackson,et al.  Mutations in the Effector Binding Loops in the C2A and C2B Domains of Synaptotagmin I Disrupt Exocytosis in a Nonadditive Manner* , 2003, Journal of Biological Chemistry.

[25]  C. Stevens,et al.  The Synaptotagmin C2A Domain Is Part of the Calcium Sensor Controlling Fast Synaptic Transmission , 2003, Neuron.

[26]  J. Rizo Faculty Opinions recommendation of The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. , 2003 .

[27]  T. Südhof,et al.  Structure/Function Analysis of Ca2+ Binding to the C2A Domain of Synaptotagmin 1 , 2002, The Journal of Neuroscience.

[28]  E. Chapman,et al.  Role of synaptotagmin in Ca2+-triggered exocytosis. , 2002, The Biochemical journal.

[29]  T. Schwarz,et al.  Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain , 2002, Nature.

[30]  I. Robinson,et al.  The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo , 2002, Nature.

[31]  Xiaodong Zhang,et al.  Ca2+-Dependent Synaptotagmin Binding to SNAP-25 Is Essential for Ca2+-Triggered Exocytosis , 2002, Neuron.

[32]  Ping Wang,et al.  C2A activates a cryptic Ca2+-triggered membrane penetration activity within the C2B domain of synaptotagmin I , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[34]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[35]  A. Brunger,et al.  Crystal Structure of the Cytosolic C2a-C2b Domains of Synaptotagmin III , 1999, The Journal of cell biology.

[36]  D. Fasshauer,et al.  Kinetics of Synaptotagmin Responses to Ca2+ and Assembly with the Core SNARE Complex onto Membranes , 1999, Neuron.

[37]  T. Südhof,et al.  Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2‐domain? , 1998, The EMBO journal.

[38]  E. Chapman,et al.  Direct Interaction of a Ca2+-binding Loop of Synaptotagmin with Lipid Bilayers* , 1998, The Journal of Biological Chemistry.

[39]  J. Rothman,et al.  Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Falke,et al.  The C2 domain calcium‐binding motif: Structural and functional diversity , 1996, Protein science : a publication of the Protein Society.

[41]  C. Creutz,et al.  Calcium‐Dependent Self‐Association of Synaptotagmin I , 1996, Journal of neurochemistry.

[42]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[43]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[44]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[45]  T. Südhof,et al.  Synaptotagmin: a calcium sensor on the synaptic vesicle surface. , 1992, Science.

[46]  T. Südhof,et al.  Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C , 1990, Nature.

[47]  Y. Nishizuka,et al.  The molecular heterogeneity of protein kinase C and its implications for cellular regulation , 1988, Nature.

[48]  S. Ohno,et al.  A novel phorbol ester receptor/protein kinase, nPKC, distantly related to the protein kinase C family , 1988, Cell.

[49]  Y. Nishizuka,et al.  The structure, expression, and properties of additional members of the protein kinase C family. , 1988, The Journal of biological chemistry.

[50]  L. Reichardt,et al.  Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue , 1981, The Journal of cell biology.

[51]  Margaret H. Butler,et al.  Three-Dimensional Structure of I to , 2004 .

[52]  A. Brunger,et al.  Crystal Structure of the Cytosolic C 2 A-C 2 B Domains of Synaptotagmin III : Implications for Ca 1 2-independent SNARE Complex Interaction , 1999 .