Subsolidus Evolution of the Magnetite-Spinel-UlvöSpinel Solid Solutions in the Kovdor Phoscorite-Carbonatite Complex, NW Russia

The Kovdor phoscorite-carbonatite ore-pipe rocks form a natural series, where apatite and magnetite first gradually increase due to the presence of earlier crystallizing forsterite in the pipe marginal zone and then decrease as a result of carbonate development in the axial zone. In all lithologies, magnetite grains contain (oxy)exsolution inclusions of comparatively earlier ilmenite group minerals and/or later spinel, and their relationship reflects the concentric zonation of the pipe. The temperature and oxygen fugacity of titanomagnetite oxy-exsolution decreases in the natural rock sequence from about 500 °C to about 300 °C and from NNO + 1 to NNO − 3 (NNO is Ni-NiO oxygen fugacity buffer), with a secondary positive maximum for vein calcite carbonatite. Exsolution spinel forms spherical grains, octahedral crystals, six-beam and eight-beam skeletal crystals co-oriented with host magnetite. The ilmenite group minerals occur as lamellae oriented along {111} and {100} planes of oxy-exsolved magnetite. The kinetics of inclusion growth depends mainly on the diffusivity of cations in magnetite: their comparatively low diffusivities in phoscorite and carbonatites of the ore-pipe internal part cause size-independent growth of exsolution inclusions; while higher diffusivities of cations in surrounding rocks, marginal forsterite-rich phoscorite and vein calcite carbonatite result in size-dependent growth of inclusions.

[1]  S. Krivovichev,et al.  Crystal chemistry of natural layered double hydroxides: 4. Crystal structures and evolution of structural complexity of quintinite polytypes from the Kovdor alkaline-ultrabasic massif, Kola peninsula, Russia , 2018, Mineralogical Magazine.

[2]  A. Kalashnikov,et al.  Approach of automatic 3D geological mapping: the case of the Kovdor phoscorite-carbonatite complex, NW Russia , 2017, Scientific Reports.

[3]  Xiaoliang Liang,et al.  Magnetite exsolution in ilmenite from the Fe-Ti oxide gabbro in the Xinjie intrusion (SW China) and sources of unusually strong remnant magnetization , 2016 .

[4]  A. O. Kalashnikov,et al.  Economic minerals of the Kovdor baddeleyite-apatite-magnetite deposit, Russia: mineralogy, spatial distribution and ore processing optimization , 2016 .

[5]  Xiaoliang Liang,et al.  Mineralogy and Origin of Exsolution in Ti-rich Magnetite from Different Magmatic Fe-ti Oxide-bearing Intrusions , 2016 .

[6]  H. Skogby,et al.  Crystal chemistry of spinels in the system MgAl2O4-MgV2O4-Mg2VO4 , 2016 .

[7]  A. O. Kalashnikov,et al.  Scandium of the Kovdor baddeleyite–apatite–magnetite deposit (Murmansk Region, Russia): Mineralogy, spatial distribution, and potential resource , 2016 .

[8]  Xie‐Yan Song,et al.  Study of oxygen fugacity during magma evolution and ore genesis in the Hongge mafic–ultramafic intrusion, the Panxi region, SW China , 2016, Acta Geochimica.

[9]  I. Broska,et al.  The late magmatic to subsolidus T-fO2 evolution of the Lower Triassic A-type rhyolites (Silicic Superunit, Western Carpathians, Slovakia): Fe-Ti oxythermometry and petrological implications , 2015 .

[10]  A. Kalashnikov,et al.  3D mineralogical mapping of the Kovdor phoscorite–carbonatite complex (Russia) , 2015, Mineralium Deposita.

[11]  H. Skogby,et al.  Crystal chemistry of the ulvöspinel-qandilite series , 2014 .

[12]  E. Zhitova Crystal Chemistry of Natural Layered Double Hydroxides , 2013 .

[13]  K. Rosso,et al.  Thermodynamics of the magnetite-ulvöspinel (Fe3O4-Fe2TiO4) solid solution , 2012 .

[14]  Y. Pakhomovsky,et al.  Self-Organization of the Khibiny Alkaline Massif (Kola Peninsula, Russia) , 2012 .

[15]  R. Downs,et al.  Closure temperatures of intracrystalline ordering in anatectic and metamorphic hercynite, Fe2+Al2O4 , 2009 .

[16]  Henk G. Merkus,et al.  Particle Size Measurements: Fundamentals, Practice, Quality , 2009 .

[17]  Ulf Hålenius,et al.  Crystal chemistry of the magnetite-ulvöspinel series , 2009 .

[18]  Mark S. Ghiorso,et al.  Thermodynamics of Rhombohedral Oxide Solid Solutions and a Revision of the FE-TI Two-Oxide Geothermometer and Oxygen-Barometer , 2008, American Journal of Science.

[19]  F. Princivalle,et al.  Comparative compressibility and structural behavior of spinel MgAl2O4 at high pressures: The independency on the degree of cation order , 2007 .

[20]  Suzanne A. McEnroe,et al.  Magnetization of exsolution intergrowths of hematite and ilmenite: Mineral chemistry, phase relations, and magnetic properties of hemo‐ilmenite ores with micron‐ to nanometer‐scale lamellae from Allard Lake, Quebec , 2007 .

[21]  Crranr,et al.  Mg / Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides , 2007 .

[22]  Awonrw Ptmvs Magnetic properties of the magnetite-spinel solid solution: Saturation magnetization and cation distributions , 2007 .

[23]  E. J. Essbne,et al.  Crystal chemistry and petrology of coexisting galaxite and jacobsite and other spinel solutions and solvi ' , 2007 .

[24]  Wyn Williams,et al.  Magnetostatic interactions in a natural magnetite‐ulvöspinel system , 2006 .

[25]  L. Kogarko,et al.  Magnetite compositions and oxygen fugacities of the Khibina magmatic system , 2006 .

[26]  J. Hammer Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization , 2006 .

[27]  R. Downs,et al.  Single-crystal X-ray diffraction of spinels from the San Carlos Volcanic Field, Arizona: Spinel as a geothermometer , 2005 .

[28]  D. Lattard,et al.  New calibration data for the Fe–Ti oxide thermo-oxybarometers from experiments in the Fe–Ti–O system at 1 bar, 1,000–1,300°C and a large range of oxygen fugacities , 2005 .

[29]  Manfred Martin Diffusion in Oxides , 2005 .

[30]  F. Wall,et al.  Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province , 2004 .

[31]  F. Wall,et al.  Introduction to phoscorites: occurrence, composition, nomenclature and petrogenesis , 2004 .

[32]  D. Kile,et al.  On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion , 2003 .

[33]  Luc D. Lepage,et al.  ILMAT: an Excel worksheet for ilmenitemagnetite geothermometry and geobarometry , 2003 .

[34]  S. Aggarwal,et al.  Point defects and cation tracer diffusion in (TixFe1−x)3−δO4 1. Non-stoichiometry and point defects , 2002 .

[35]  D. Kile,et al.  On geological interpretations of crystal size distributions: Constant vs. proportionate growth , 2002 .

[36]  A. Myerson Handbook of Industrial Crystallization , 2002 .

[37]  Alfons Mersmann,et al.  Measurement of Crystal Growth and Nucleation Rates , 2002 .

[38]  R. Harrison,et al.  Short- and long-range ordering in the ilmenite–hematite solid solution , 2001 .

[39]  R. Harrison Thermodynamics of the R3̅ to R3̅c phase transition in the ilmenite-hematite solid solution , 2000 .

[40]  Youxue Zhang,et al.  Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB , 2000 .

[41]  Subir K. Banerjee Rock Magnetism: Fundamentals and Frontiers , 1998 .

[42]  B. Marsh On the Interpretation of Crystal Size Distributions in Magmatic Systems , 1998 .

[43]  J. Gee,et al.  Magnetization of axial lavas from the southern East Pacific Rise (14°–23°S): Geochemical controls on magnetic properties , 1997 .

[44]  S. Lucchesi,et al.  Crystal chemistry and cation distribution in some Mn-rich natural and synthetic spinels , 1996 .

[45]  N. Krasnova,et al.  New data on the nature of fine and ultrafine lamellae in titanomagnetite , 1995 .

[46]  S. Brantley,et al.  Power-law vein-thickness distributions and positive feedback in vein growth , 1995 .

[47]  G. D. Price Introduction to Mineral Sciences , 1993, Mineralogical Magazine.

[48]  D. Virgo,et al.  The temperature dependence of the cation distribution in magnesioferrite (MgFe 2 O 4 ) from powder XRD structural refinements and Moessbauer spectroscopy , 1992 .

[49]  D. Lindsley,et al.  Occurrence of iron-titanium oxides in igneous rocks , 1991 .

[50]  B. Frost Chapter 1.INTRODUCTION TO OXYGEN FUGACITY AND ITS PETROLOGIC IMPORTANCE , 1991 .

[51]  M. Ghiorso,et al.  An internally consistent model for the thermodynamic properties of Fe−Mg-titanomagnetite-aluminate spinels , 1991 .

[52]  S. Haggerty Oxide textures; a mini-atlas , 1991 .

[53]  Mark S. Ghiorso,et al.  Thermodynamic properties of hematite — ilmenite — geikielite solid solutions , 1990 .

[54]  Donald H. Lindsley,et al.  Fe-Ti oxide-silicate equilibria; assemblages with fayalitic olivine , 1988 .

[55]  B. Wood,et al.  Magnetite activities across the MgAl2O4-Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity , 1988 .

[56]  L. Anovitz,et al.  Phase Equilibria in the System CaCO3-MgCO3-FeCO3 , 1987 .

[57]  J. Lehmann,et al.  Experimental and theoretical study of (Fe2+, Mg)(Al, Fe3+)2O4 spinels: Activity-composition relationships, miscibility gaps, vacancy contents , 1986 .

[58]  R. Dieckmann,et al.  Defects and Cation Diffusion in Magnetite (VI): Point Defect Relaxation and Correlation in Cation Tracer Diffusion , 1986 .

[59]  D. Lindsley,et al.  New (and final!) models for the Ti-magnetite/ ilmenite geothermometer and oxygen barometer , 1985 .

[60]  J. Stormer The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides , 1983 .

[61]  R. Sack Spinels as petrogenetic indicators: Activity-composition relations at low pressures , 1982 .

[62]  D. Lindsley,et al.  A solution model for coexisting iron–titanium oxides , 1981 .

[63]  GnoprRBy D. pRrcn Subsolidus phase relations in the titanomagnetite solid solution series , 1981 .

[64]  T. Mason,et al.  Defects and Cation Diffusion in Magnetite (III.) Tracerdiffusion of Foreign Tracer Cations as a Function of Temperature and Oxygen Potential , 1978 .

[65]  M. Evans,et al.  An Investigation of the Role of Ultra-fine Titanomagnetite Intergrowths in Palaeomagnetism , 1974 .

[66]  A. Cox,et al.  Magnetism of Pillow Basalts and Their Petrology , 1971 .

[67]  R. Yund,et al.  Kinetics and mechanisms of exsolution , 1970 .

[68]  A. Buddington,et al.  Iron-Titanium Oxide Minerals and Synthetic Equivalents , 1964 .

[69]  A. S. Radtke Coulsonite, FeV2O4, a spinel-type mineral from lovelock, nevada , 1962 .

[70]  Taiji Arakawa,et al.  Paramagnetic Resonance of Mn++ in MgTiF6·6H2O , 1962 .

[71]  H. Eugster,et al.  Fe—Al Oxides: Phase Relationships below 1,000°C , 1962 .

[72]  Naoto Kmvai Exsolution of Titanomagnetite and Its Time Effect on Rock-Magnetism. , 1956 .

[73]  E. A. Vincent,et al.  Iron-titanium oxide minerals in layered gabbros of the Skaergaard intrusion, East Greenland: Part II. Magnetic properties , 1954 .

[74]  E. A. Vincent,et al.  Iron-titanium oxide minerals in layered gabbros of the Skaergaard intrusion, East Greenland: Part I. Chemistry and ore-microscopy , 1954 .