Subsolidus Evolution of the Magnetite-Spinel-UlvöSpinel Solid Solutions in the Kovdor Phoscorite-Carbonatite Complex, NW Russia
暂无分享,去创建一个
A. O. Kalashnikov | N. G. Konopleva | Y. Pakhomovsky | G. Ivanyuk | A. Bazai | J. Mikhailova | P. Goryainov | V. Yakovenchuk
[1] S. Krivovichev,et al. Crystal chemistry of natural layered double hydroxides: 4. Crystal structures and evolution of structural complexity of quintinite polytypes from the Kovdor alkaline-ultrabasic massif, Kola peninsula, Russia , 2018, Mineralogical Magazine.
[2] A. Kalashnikov,et al. Approach of automatic 3D geological mapping: the case of the Kovdor phoscorite-carbonatite complex, NW Russia , 2017, Scientific Reports.
[3] Xiaoliang Liang,et al. Magnetite exsolution in ilmenite from the Fe-Ti oxide gabbro in the Xinjie intrusion (SW China) and sources of unusually strong remnant magnetization , 2016 .
[4] A. O. Kalashnikov,et al. Economic minerals of the Kovdor baddeleyite-apatite-magnetite deposit, Russia: mineralogy, spatial distribution and ore processing optimization , 2016 .
[5] Xiaoliang Liang,et al. Mineralogy and Origin of Exsolution in Ti-rich Magnetite from Different Magmatic Fe-ti Oxide-bearing Intrusions , 2016 .
[6] H. Skogby,et al. Crystal chemistry of spinels in the system MgAl2O4-MgV2O4-Mg2VO4 , 2016 .
[7] A. O. Kalashnikov,et al. Scandium of the Kovdor baddeleyite–apatite–magnetite deposit (Murmansk Region, Russia): Mineralogy, spatial distribution, and potential resource , 2016 .
[8] Xie‐Yan Song,et al. Study of oxygen fugacity during magma evolution and ore genesis in the Hongge mafic–ultramafic intrusion, the Panxi region, SW China , 2016, Acta Geochimica.
[9] I. Broska,et al. The late magmatic to subsolidus T-fO2 evolution of the Lower Triassic A-type rhyolites (Silicic Superunit, Western Carpathians, Slovakia): Fe-Ti oxythermometry and petrological implications , 2015 .
[10] A. Kalashnikov,et al. 3D mineralogical mapping of the Kovdor phoscorite–carbonatite complex (Russia) , 2015, Mineralium Deposita.
[11] H. Skogby,et al. Crystal chemistry of the ulvöspinel-qandilite series , 2014 .
[12] E. Zhitova. Crystal Chemistry of Natural Layered Double Hydroxides , 2013 .
[13] K. Rosso,et al. Thermodynamics of the magnetite-ulvöspinel (Fe3O4-Fe2TiO4) solid solution , 2012 .
[14] Y. Pakhomovsky,et al. Self-Organization of the Khibiny Alkaline Massif (Kola Peninsula, Russia) , 2012 .
[15] R. Downs,et al. Closure temperatures of intracrystalline ordering in anatectic and metamorphic hercynite, Fe2+Al2O4 , 2009 .
[16] Henk G. Merkus,et al. Particle Size Measurements: Fundamentals, Practice, Quality , 2009 .
[17] Ulf Hålenius,et al. Crystal chemistry of the magnetite-ulvöspinel series , 2009 .
[18] Mark S. Ghiorso,et al. Thermodynamics of Rhombohedral Oxide Solid Solutions and a Revision of the FE-TI Two-Oxide Geothermometer and Oxygen-Barometer , 2008, American Journal of Science.
[19] F. Princivalle,et al. Comparative compressibility and structural behavior of spinel MgAl2O4 at high pressures: The independency on the degree of cation order , 2007 .
[20] Suzanne A. McEnroe,et al. Magnetization of exsolution intergrowths of hematite and ilmenite: Mineral chemistry, phase relations, and magnetic properties of hemo‐ilmenite ores with micron‐ to nanometer‐scale lamellae from Allard Lake, Quebec , 2007 .
[21] Crranr,et al. Mg / Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides , 2007 .
[22] Awonrw Ptmvs. Magnetic properties of the magnetite-spinel solid solution: Saturation magnetization and cation distributions , 2007 .
[23] E. J. Essbne,et al. Crystal chemistry and petrology of coexisting galaxite and jacobsite and other spinel solutions and solvi ' , 2007 .
[24] Wyn Williams,et al. Magnetostatic interactions in a natural magnetite‐ulvöspinel system , 2006 .
[25] L. Kogarko,et al. Magnetite compositions and oxygen fugacities of the Khibina magmatic system , 2006 .
[26] J. Hammer. Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization , 2006 .
[27] R. Downs,et al. Single-crystal X-ray diffraction of spinels from the San Carlos Volcanic Field, Arizona: Spinel as a geothermometer , 2005 .
[28] D. Lattard,et al. New calibration data for the Fe–Ti oxide thermo-oxybarometers from experiments in the Fe–Ti–O system at 1 bar, 1,000–1,300°C and a large range of oxygen fugacities , 2005 .
[29] Manfred Martin. Diffusion in Oxides , 2005 .
[30] F. Wall,et al. Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province , 2004 .
[31] F. Wall,et al. Introduction to phoscorites: occurrence, composition, nomenclature and petrogenesis , 2004 .
[32] D. Kile,et al. On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion , 2003 .
[33] Luc D. Lepage,et al. ILMAT: an Excel worksheet for ilmenitemagnetite geothermometry and geobarometry , 2003 .
[34] S. Aggarwal,et al. Point defects and cation tracer diffusion in (TixFe1−x)3−δO4 1. Non-stoichiometry and point defects , 2002 .
[35] D. Kile,et al. On geological interpretations of crystal size distributions: Constant vs. proportionate growth , 2002 .
[36] A. Myerson. Handbook of Industrial Crystallization , 2002 .
[37] Alfons Mersmann,et al. Measurement of Crystal Growth and Nucleation Rates , 2002 .
[38] R. Harrison,et al. Short- and long-range ordering in the ilmenite–hematite solid solution , 2001 .
[39] R. Harrison. Thermodynamics of the R3̅ to R3̅c phase transition in the ilmenite-hematite solid solution , 2000 .
[40] Youxue Zhang,et al. Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB , 2000 .
[41] Subir K. Banerjee. Rock Magnetism: Fundamentals and Frontiers , 1998 .
[42] B. Marsh. On the Interpretation of Crystal Size Distributions in Magmatic Systems , 1998 .
[43] J. Gee,et al. Magnetization of axial lavas from the southern East Pacific Rise (14°–23°S): Geochemical controls on magnetic properties , 1997 .
[44] S. Lucchesi,et al. Crystal chemistry and cation distribution in some Mn-rich natural and synthetic spinels , 1996 .
[45] N. Krasnova,et al. New data on the nature of fine and ultrafine lamellae in titanomagnetite , 1995 .
[46] S. Brantley,et al. Power-law vein-thickness distributions and positive feedback in vein growth , 1995 .
[47] G. D. Price. Introduction to Mineral Sciences , 1993, Mineralogical Magazine.
[48] D. Virgo,et al. The temperature dependence of the cation distribution in magnesioferrite (MgFe 2 O 4 ) from powder XRD structural refinements and Moessbauer spectroscopy , 1992 .
[49] D. Lindsley,et al. Occurrence of iron-titanium oxides in igneous rocks , 1991 .
[50] B. Frost. Chapter 1.INTRODUCTION TO OXYGEN FUGACITY AND ITS PETROLOGIC IMPORTANCE , 1991 .
[51] M. Ghiorso,et al. An internally consistent model for the thermodynamic properties of Fe−Mg-titanomagnetite-aluminate spinels , 1991 .
[52] S. Haggerty. Oxide textures; a mini-atlas , 1991 .
[53] Mark S. Ghiorso,et al. Thermodynamic properties of hematite — ilmenite — geikielite solid solutions , 1990 .
[54] Donald H. Lindsley,et al. Fe-Ti oxide-silicate equilibria; assemblages with fayalitic olivine , 1988 .
[55] B. Wood,et al. Magnetite activities across the MgAl2O4-Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity , 1988 .
[56] L. Anovitz,et al. Phase Equilibria in the System CaCO3-MgCO3-FeCO3 , 1987 .
[57] J. Lehmann,et al. Experimental and theoretical study of (Fe2+, Mg)(Al, Fe3+)2O4 spinels: Activity-composition relationships, miscibility gaps, vacancy contents , 1986 .
[58] R. Dieckmann,et al. Defects and Cation Diffusion in Magnetite (VI): Point Defect Relaxation and Correlation in Cation Tracer Diffusion , 1986 .
[59] D. Lindsley,et al. New (and final!) models for the Ti-magnetite/ ilmenite geothermometer and oxygen barometer , 1985 .
[60] J. Stormer. The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides , 1983 .
[61] R. Sack. Spinels as petrogenetic indicators: Activity-composition relations at low pressures , 1982 .
[62] D. Lindsley,et al. A solution model for coexisting iron–titanium oxides , 1981 .
[63] GnoprRBy D. pRrcn. Subsolidus phase relations in the titanomagnetite solid solution series , 1981 .
[64] T. Mason,et al. Defects and Cation Diffusion in Magnetite (III.) Tracerdiffusion of Foreign Tracer Cations as a Function of Temperature and Oxygen Potential , 1978 .
[65] M. Evans,et al. An Investigation of the Role of Ultra-fine Titanomagnetite Intergrowths in Palaeomagnetism , 1974 .
[66] A. Cox,et al. Magnetism of Pillow Basalts and Their Petrology , 1971 .
[67] R. Yund,et al. Kinetics and mechanisms of exsolution , 1970 .
[68] A. Buddington,et al. Iron-Titanium Oxide Minerals and Synthetic Equivalents , 1964 .
[69] A. S. Radtke. Coulsonite, FeV2O4, a spinel-type mineral from lovelock, nevada , 1962 .
[70] Taiji Arakawa,et al. Paramagnetic Resonance of Mn++ in MgTiF6·6H2O , 1962 .
[71] H. Eugster,et al. Fe—Al Oxides: Phase Relationships below 1,000°C , 1962 .
[72] Naoto Kmvai. Exsolution of Titanomagnetite and Its Time Effect on Rock-Magnetism. , 1956 .
[73] E. A. Vincent,et al. Iron-titanium oxide minerals in layered gabbros of the Skaergaard intrusion, East Greenland: Part II. Magnetic properties , 1954 .
[74] E. A. Vincent,et al. Iron-titanium oxide minerals in layered gabbros of the Skaergaard intrusion, East Greenland: Part I. Chemistry and ore-microscopy , 1954 .