Prototype Sodium‐Ion Batteries Using an Air‐Stable and Co/Ni‐Free O3‐Layered Metal Oxide Cathode

A prototype rechargeable sodium-ion battery using an O3-Na0.90[Cu0.22 Fe0.30 Mn0.48]O2 cathode and a hard carbon anode is demonstrated to show an energy density of 210 W h kg(-1) , a round-trip energy efficiency of 90%, a high rate capability (up to 6C rate), and excellent cycling stability.

[1]  S. Passerini,et al.  Mg-doping for improved long-term cyclability of layered Na-ion cathode materials - The example of P2-type Na x Mg 0.11 Mn 0.89 O 2 , 2015 .

[2]  Hiroaki Yoshida,et al.  NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆ , 2013 .

[3]  K. Kubota,et al.  Layered oxides as positive electrode materials for Na-ion batteries , 2014 .

[4]  Chun-hua Chen,et al.  Na[Ni0.4Fe0.2Mn0.4−xTix]O2: a cathode of high capacity and superior cyclability for Na-ion batteries , 2014 .

[5]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[6]  K. Kubota,et al.  New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries , 2014 .

[7]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[8]  Gerbrand Ceder,et al.  Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries , 2014 .

[9]  M. Armand,et al.  Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries , 2014 .

[10]  Gerbrand Ceder,et al.  Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides , 2014 .

[11]  Xiao‐Qing Yang,et al.  O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries , 2014 .

[12]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[13]  Wei He,et al.  Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries , 2013 .

[14]  Hiroaki Yoshida,et al.  Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries , 2013 .

[15]  C. Delmas,et al.  Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1−yFeyO2 (y = 0, 1/3, 2/3) , 2012 .

[16]  Y. Meng,et al.  Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries , 2014 .

[17]  R. Kataoka,et al.  Development of High Capacity Cathode Material for Sodium Ion Batteries Na0.95Li0.15(Ni0.15Mn0.55Co0.1)O2 , 2013 .

[18]  P. Hagenmuller,et al.  Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2 , 1982 .

[19]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[20]  Yuesheng Wang,et al.  Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries , 2015 .

[21]  Jun Lu,et al.  Layered P2/O3 Intergrowth Cathode: Toward High Power Na‐Ion Batteries , 2014 .

[22]  Yan Yu,et al.  Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. , 2014, ACS nano.

[23]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[24]  K. Kubota,et al.  A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity , 2014 .

[25]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[26]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[27]  B. Hwang,et al.  The P2-Na(2/3)Co(2/3)Mn(1/3)O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. , 2011, Dalton transactions.

[28]  Kepeng Song,et al.  Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. , 2014, Nano letters.

[29]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[30]  Mark N. Obrovac,et al.  Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 , 2013 .

[31]  B. Hwang,et al.  O3–NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na+ (de)intercalation , 2015 .

[32]  Dongwook Han,et al.  Aluminum manganese oxides with mixed crystal structure: high-energy-density cathodes for rechargeable sodium batteries. , 2014, ChemSusChem.

[33]  Jiangfeng Qian,et al.  P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery , 2014 .

[34]  A. Yamada,et al.  Electrode Properties of P2–Na2/3MnyCo1–yO2 as Cathode Materials for Sodium-Ion Batteries , 2013 .

[35]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[36]  S. Xu 徐,et al.  Novel copper redox-based cathode materials for room-temperature sodium-ion batteries , 2014 .

[37]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[38]  Masayoshi Ishida,et al.  Novel titanium-based O3-type NaTi(0.5)Ni(0.5)O2 as a cathode material for sodium ion batteries. , 2014, Chemical communications.

[39]  Yan Yu,et al.  3D V₆O₁₃ nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. , 2015, Nano letters.

[40]  Lin Gu,et al.  Air‐Stable Copper‐Based P2‐Na7/9Cu2/9Fe1/9Mn2/3O2 as a New Positive Electrode Material for Sodium‐Ion Batteries , 2015, Advanced science.

[41]  Seung M. Oh,et al.  High Capacity O3-Type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 Cathode for Sodium Ion Batteries , 2014 .

[42]  S. Passerini,et al.  Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material , 2014 .

[43]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[44]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[45]  C. Delmas,et al.  Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries , 2013 .

[46]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2− Na x (Li y Ni z Mn 1−y−z )O 2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries , 2014 .

[47]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[48]  Tao Zhang,et al.  High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2 , 2015 .

[49]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[50]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[51]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[52]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[53]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[54]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[55]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .