Methane and life on Mars

Mumma et al. 1 have confirmed earlier detections of methane in the Martian atmosphere, finding it localized and correlated with atmospheric water vapor. They determined that, because of the short half-life of methane, a continual replenishment is required to account for its presence. They also conclude that the dynamics of methane on Mars require a methane sink in the soil. It is suggested here that both phenomenon could be accounted for by an ecology of methane-producing and methane-consuming microorganisms. Such ecologies exist on Earth, where, generally, anaerobic methanogens live at depth and aerobic methanotrophs live at or near the surface. On Mars, with its essentially anaerobic atmosphere, both types of microorganisms could co-exist at or near the surface. It is possible that the Viking Labeled Release (LR) experiment detected methanogens in addition to other microorganisms evolving carbon dioxide since the LR instrumentation would detect methane, carbon dioxide, or any other carbon gas derived from one of the LR substrates. A simple modification of the LR experiment that could resolve the life on Mars issue is discussed.

[1]  A. Kiener,et al.  Oxygen sensitivity of methanogenic bacteria. , 1983, Systematic and applied microbiology.

[2]  A. K. Baird,et al.  The Viking X ray fluorescence experiment - Sampling strategies and laboratory simulations. [Mars soil sampling] , 1977 .

[3]  D. Ming,et al.  Perchlorate in Martian Soil: Evidence and Implications , 2009 .

[4]  E. Dlugokencky,et al.  Mauna Loa volcano is not a methane source: Implications for Mars , 2006 .

[5]  G. Levin,et al.  Completion of the Viking labeled release experiment on Mars , 1979, Journal of Molecular Evolution.

[6]  R. Conrad,et al.  Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil , 1990 .

[7]  D. R. Rushneck,et al.  The composition of the atmosphere at the surface of Mars , 1977 .

[8]  W. Reeburgh,et al.  METHANE CONSUMPTION IN CARIACO TRENCH WATERS AND SEDIMENTS , 1976 .

[9]  G. Klingelhöfer Mössbauer In Situ Studies of the Surface of Mars , 2004 .

[10]  D. Blake,et al.  Continuing Worldwide Increase in Tropospheric Methane, 1978 to 1987 , 1988, Science.

[11]  M. Kalyuzhnaya,et al.  Discovery of Viable Methanotrophic Bacteria in Permafrost Sediments of Northeast Siberia , 2002, Doklady Biological Sciences.

[12]  R. A. Hanel,et al.  Investigation of the Martian environment by infrared spectroscopy on Mariner 9 , 1972 .

[13]  J. Bandfield,et al.  Determination and interpretation of surface and atmospheric Miniature Thermal Emission Spectrometer spectral end‐members at the Meridiani Planum landing site , 2006 .

[14]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[15]  D. Wagner,et al.  Global Warming and Carbon Dynamics in Permafrost Soils: Methane Production and Oxidation , 2009 .

[16]  Richard N. Zare,et al.  Past Life on Mars : Possible Relic Biogenic Activity in Martian Meteorite ALH 84001 , 2008 .

[17]  D. Möhlmann The influence of van der Waals forces on the state of water in the shallow subsurface of Mars , 2008 .

[18]  M B Madsen,et al.  Magnetic properties experiments on the Mars Pathfinder lander: preliminary results. , 1997, Science.

[19]  Henning Rodhe,et al.  A Comparison of the Contribution of Various Gases to the Greenhouse Effect , 1990, Science.

[20]  Gordon L. Bjoraker,et al.  High‐resolution spectroscopy of Mars at 3.7 and 8 μm: A sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO , 1997 .

[21]  G. Levin,et al.  Life on Mars? The Viking labeled release experiment. , 1977, Bio Systems.

[22]  R. Lodder,et al.  Detecting Life and Biology-Related Parameters on Mars , 2007, 2007 IEEE Aerospace Conference.

[23]  James E. Lovelock,et al.  Life detection by atmospheric analysis , 1967 .

[24]  Gilbert V. Levin,et al.  The Viking Labeled Release experiment and life on Mars , 1997, Optics & Photonics.

[25]  G. Lettinga,et al.  Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment , 1997 .

[26]  N. L. Söhngen Sur le rôle du Méthane dans la vie organique , 2010 .

[27]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[28]  G. Levin Possible evidence for panspermia: the labelled release experiment* , 2007, International Journal of Astrobiology.

[29]  Michael J. Mumma,et al.  A Sensitive Search for Methane on Mars , 2003 .

[30]  Mike S. M. Jetten,et al.  A microbial consortium couples anaerobic methane oxidation to denitrification , 2006, Nature.

[31]  Tobias Owen,et al.  Detection of methane in the martian atmosphere: evidence for life? , 2004 .

[32]  J. Tiedje,et al.  Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. , 1998, Science.

[33]  V. A. Krasnopolsky,et al.  Photochemistry of the Martian Atmosphere (Mean Conditions) , 1993 .

[34]  G. Lettinga,et al.  High tolerance of methanogens in granular sludge to oxygen , 1993, Biotechnology and bioengineering.

[35]  Patricia Ann Straat,et al.  Sterile robotic Mars soil analyzer , 2003, SPIE Astronomical Telescopes + Instrumentation.

[36]  J. Peckmann,et al.  A new constraint on the antiquity of anaerobic oxidation of methane: Late Pennsylvanian seep limestones from southern Namibia , 2008 .

[37]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[38]  Olaf Pfannkuche,et al.  A marine microbial consortium apparently mediating anaerobic oxidation of methane , 2000, Nature.

[39]  J. Chanton,et al.  Rhizospheric methane oxidation determined via the methyl fluoride inhibition technique , 1993 .

[40]  Tori M. Hoehler,et al.  Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen‐sulfate reducer consortium , 1994 .

[41]  Nicolas Thomas,et al.  INSTRUMENTS, METHODS, AND MISSIONS FOR ASTROBIOLOGY , 1998 .

[42]  D. B. Nedwell Methane Production and Oxidation in Soils and Sediments , 1996 .

[43]  T. Kral,et al.  Desert methane: Implications for life detection on Mars , 2005 .

[44]  George L. Hobby,et al.  Viking on Mars: The carbon assimilation experiments , 1977 .

[45]  David S. Reay,et al.  Greenhouse Gas Sinks , 2007 .

[46]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[47]  R. Conrad,et al.  Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation , 1993 .

[48]  Marco Giuranna,et al.  Detection of Methane in the Atmosphere of Mars , 2004, Science.

[49]  R. Kerr Life or Volcanic Belching on Mars? , 2004, Science.

[50]  T. Encrenaz,et al.  Hydrogen peroxide on Mars: evidence for spatial and seasonal variations , 2004 .

[51]  Andreas Gattinger,et al.  Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. , 2005, Environmental microbiology.

[52]  Duane O. Muhleman,et al.  WATER VAPOR SATURATION AT LOW ALTITUDES AROUND MARS APHELION : A KEY TO MARS CLIMATE ? , 1996 .

[53]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[54]  Thomas E Hanson,et al.  Methanotrophic bacteria. , 1996, Microbiological reviews.

[55]  Hans-Peter Horz,et al.  Methane-Oxidizing Bacteria in a California Upland Grassland Soil: Diversity and Response to Simulated Global Change , 2005, Applied and Environmental Microbiology.

[56]  Richard A Kerr Phoenix's Water May Be Gumming Up the Works , 2008, Science.

[57]  G. Levin,et al.  Labeled release — An experiment in radiorespirometry , 1976, Origins of life.

[58]  K. Miyamoto Renewable biological systems for alternative sustainable energy production , 1997 .

[59]  Y. Trotsenko,et al.  Aerobic methanotrophic bacteria of cold ecosystems. , 2005, FEMS microbiology ecology.

[60]  P. Price,et al.  Microbial origin of excess methane in glacial ice and implications for life on Mars. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  G. Levin,et al.  Viking Labeled Release Biology Experiment: Interim Results , 1976, Science.

[62]  R. Conrad,et al.  Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils , 1995, Applied and environmental microbiology.

[63]  C. Spitzer,et al.  The Viking magnetic properties experiment - Primary mission results. [on Mars landing sites , 1977 .

[64]  Michael D. Smith,et al.  Strong Release of Methane on Mars in Northern Summer 2003 , 2009, Science.

[65]  J. Murrell,et al.  Facultative Methanotrophs Revisited , 2005, Journal of bacteriology.

[66]  Klaus Keil,et al.  Geochemical and mineralogical interpretation of the Viking inorganic chemical results , 1977 .

[67]  R. E. Arvidson,et al.  Supporting Online Material , 2003 .

[68]  R. Conrad,et al.  Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). , 1996, Microbiological reviews.

[69]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[70]  E. Golub,et al.  Photocatalytic synthesis of organic compounds from CO and water: Involvement of surfaces in the formation and stabilization of products , 2005, Journal of Molecular Evolution.

[71]  T. J. McCoy,et al.  Exploration of Victoria Crater by the Mars Rover Opportunity , 2009, Science.

[72]  Klaus Keil,et al.  The Viking X ray fluorescence experiment - Analytical methods and early results , 1977 .

[73]  H. J. Moore,et al.  Surface materials of the Viking landing sites , 1977 .

[74]  J. Saunders,et al.  Microbiological processes in the terrestrial carbon cycle : Methane cycling in peat , 1998 .

[75]  Rudolf Amann,et al.  Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane , 2002, Science.

[76]  S. Dedysh,et al.  Methylocella Species Are Facultatively Methanotrophic , 2005, Journal of bacteriology.