Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems.

Cryogenic transmission electron microscopy (cryo-TEM) has evolved into an indispensable tool for the characterization of colloidal drug delivery systems. It can be applied to study the size, shape and internal structure of nanoparticulate carrier systems as well as the overall colloidal composition of the corresponding dispersions. This review gives a short overview over the instrumentation used in cryo-TEM experiments and over the sample preparation procedure. Selected examples of cryo-TEM studies on colloidal drug carrier systems, including liposomes, colloidal lipid emulsions, solid lipid nanoparticles, thermotropic and lyotropic liquid crystalline nanoparticles, polymer-based colloids and delivery systems for nucleic acids, are presented in order to illustrate the wealth of information that can be obtained by this technique.

[1]  R. Schubert,et al.  Preparative size exclusion chromatography combined with detergent removal as a versatile tool to prepare unilamellar and spherical liposomes of highly uniform size distribution. , 2009, Journal of chromatography. A.

[2]  A. Fahr,et al.  Temoporfin-loaded invasomes: development, characterization and in vitro skin penetration studies. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[3]  F. Separovic,et al.  Physicochemical characterization and stability of rifampicin liposome dry powder formulations for inhalation. , 2009, Journal of pharmaceutical sciences.

[4]  Randy Crawford,et al.  Analysis of lipid nanoparticles by Cryo-EM for characterizing siRNA delivery vehicles. , 2011, International journal of pharmaceutics.

[5]  J. Lehn,et al.  Self-assembled lamellar complexes of siRNA with lipidic aminoglycoside derivatives promote efficient siRNA delivery and interference , 2007, Proceedings of the National Academy of Sciences.

[6]  J. Lepault,et al.  New Bicompartmental Structures Are Observed When Stearylamine is Mixed with Triglyceride Emulsions , 2000, Pharmaceutical Research.

[7]  Chuan Xiao,et al.  Effects of the incorporation of a hydrophobic middle block into a PEG-polycation diblock copolymer on the physicochemical and cell interaction properties of the polymer-DNA complexes. , 2008, Biomacromolecules.

[8]  Karsten Mäder,et al.  Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[9]  D. Fischer,et al.  The physical state of lipid nanoparticles influences their effect on in vitro cell viability. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[10]  J. Harris,et al.  Negative staining of thinly spread biological samples. , 2007, Methods in molecular biology.

[11]  K. Edwards,et al.  An evaluation of transmembrane ion gradient-mediated encapsulation of topotecan within liposomes. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[12]  Emilie Allard,et al.  The encapsulation of DNA molecules within biomimetic lipid nanocapsules. , 2009, Biomaterials.

[13]  Wim E Hennink,et al.  Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[14]  L. Norlén Nanostructure of the stratum corneum extracellular lipid matrix as observed by cryo‐electron microscopy of vitreous skin sections , 2007, International journal of cosmetic science.

[15]  H. Watzke,et al.  Reversible phase transitions in emulsified nanostructured lipid systems. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[16]  F. Tiberg,et al.  Cubic phase nanoparticles (Cubosome): principles for controlling size, structure, and stability. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[17]  D. Hammer,et al.  Quantitative membrane loading of polymer vesicles. , 2006, Soft matter.

[18]  Wen Jiang,et al.  Cryoelectron microscopy of icosahedral virus particles. , 2007, Methods in molecular biology.

[19]  Tommy Nylander,et al.  Condensing DNA with poly(amido amine) dendrimers of different generations: means of controlling aggregate morphology , 2009, Soft Matter.

[20]  E. Dickinson,et al.  Colloidal dispersions based on solid lipids , 2001 .

[21]  Joachim Frank,et al.  Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes , 2008, Nature Protocols.

[22]  M. Bally,et al.  Polyethylene glycol modified phospholipids stabilize emulsions prepared from triacylglycerol. , 1994, Journal of pharmaceutical sciences.

[23]  V. Alfredsson,et al.  Cryo-TEM studies of DNA and DNA–lipid structures , 2005 .

[24]  Heiner Friedrich,et al.  Imaging of self-assembled structures: interpretation of TEM and cryo-TEM images. , 2010, Angewandte Chemie.

[25]  Heike Bunjes,et al.  Incorporation of the Model Drug Ubidecarenone into Solid Lipid Nanoparticles , 2001, Pharmaceutical Research.

[26]  P. Frederik,et al.  Cryoelectron microscopy of liposomes. , 2005, Methods in enzymology.

[27]  R. Firestone,et al.  Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. , 1994, Bioconjugate chemistry.

[28]  K. Edwards,et al.  Influence of preparation path on the formation of discs and threadlike micelles in DSPE-PEG(2000)/lipid systems. , 2008, Biophysical chemistry.

[29]  J Szebeni,et al.  Formation of complement-activating particles in aqueous solutions of Taxol: possible role in hypersensitivity reactions. , 2001, International immunopharmacology.

[30]  S. Rangelov,et al.  Particulate and bulk bicontinuous cubic phases obtained from mixtures of glyceryl monooleate and copolymers bearing blocks of lipid-mimetic anchors in water. , 2005, The journal of physical chemistry. B.

[31]  J. Kamps,et al.  Stabilized Lipid Coated Lipoplexes for the Delivery of Antisense Oligonucleotides to Liver Endothelial Cells In Vitro and In Vivo , 2004, Journal of drug targeting.

[32]  M. Leser,et al.  Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure (Fd3m). , 2006, Langmuir : the ACS journal of surfaces and colloids.

[33]  H. Bunjes,et al.  Transformation of vesicular into cubic nanoparticles by autoclaving of aqueous monoolein/poloxamer dispersions. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[34]  Heike Bunjes,et al.  Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the alpha-modification. , 2009, Molecular pharmaceutics.

[35]  Walter Richter,et al.  Visualizing the structure of triglyceride nanoparticles in different crystal modifications. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[36]  Hanne Mørck Nielsen,et al.  Investigation of the interaction between modified ISCOMs and stratum corneum lipid model systems. , 2010, Biochimica et biophysica acta.

[37]  W. Chiu,et al.  Three-dimensional structure of low density lipoproteins by electron cryomicroscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Strey,et al.  Freeze fracture direct imaging: a new freeze fracture method for specimen preparation in cryo-transmission electron microscopy. , 2004, Langmuir.

[39]  R. Peschka-Süss,et al.  Large-scale production of lipoplexes with long shelf-life. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[40]  Y. Lam,et al.  Aqueous phase behavior and dispersed nanoparticles of diglycerol monooleate/glycerol dioleate mixtures. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[41]  K. Edwards,et al.  Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids. , 2003, Biophysical journal.

[42]  A. Müller,et al.  Self-assembly of asymmetric poly(ethylene oxide)-block-poly(n-butyl acrylate) diblock copolymers in aqueous media to unexpected morphologies. , 2009, The journal of physical chemistry. B.

[43]  S. Mallapragada,et al.  Colloidally stable novel copolymeric system for gene delivery in complete growth media. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[44]  S. Subramaniam,et al.  Cryo-electron tomography of bacteria: progress, challenges and future prospects , 2009, Nature Reviews Microbiology.

[45]  Anette Müllertz,et al.  Colloidal Structures in Media Simulating Intestinal Fed State Conditions with and Without Lipolysis Products , 2009, Pharmaceutical Research.

[46]  H. Bunjes,et al.  Crystallization behavior of supercooled smectic cholesteryl myristate nanoparticles containing phospholipids as stabilizers. , 2005, Colloids and surfaces. B, Biointerfaces.

[47]  K. Westesen,et al.  Preparation and Physicochemical Characterization of Aqueous Dispersions of Coenzyme Q10 Nanoparticles , 1995, Pharmaceutical Research.

[48]  J. Zasadzinski Transmission electron microscopy observations of sonication-induced changes in liposome structure. , 1986, Biophysical journal.

[49]  Klaas Nicolay,et al.  Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. , 2010, Biomaterials.

[50]  M. Almgren,et al.  Submicron Particles of Reversed Lipid Phases in Water Stabilized by a Nonionic Amphiphilic Polymer , 1997 .

[51]  L. Gan,et al.  Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability. , 2010, International journal of pharmaceutics.

[52]  K. Edwards,et al.  Effects of phospholipid hydrolysis on the aggregate structure in DPPC/DSPE-PEG2000 liposome preparations after gel to liquid crystalline phase transition. , 2006, Biochimica et biophysica acta.

[53]  J. Spin,et al.  Cryoelectron microscopy of low density lipoprotein in vitreous ice. , 1995, Biophysical journal.

[54]  J. Byrd,et al.  Targeted delivery of antisense oligodeoxynucleotide by transferrin conjugated pH-sensitive lipopolyplex nanoparticles: a novel oligonucleotide-based therapeutic strategy in acute myeloid leukemia. , 2010, Molecular pharmaceutics.

[55]  P. Keller,et al.  Self-assembly of linear-dendritic diblock copolymers: from nanofibers to polymersomes. , 2010, Journal of the American Chemical Society.

[56]  B. Bergenståhl,et al.  Morphological observations on a lipid-based drug delivery system during in vitro digestion. , 2007, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[57]  F. Booy,et al.  Characterisation of LMD virus-like nanoparticles self-assembled from cationic liposomes, adenovirus core peptide μ (mu) and plasmid DNA , 2002, Gene Therapy.

[58]  K. Edwards,et al.  Formation of transition metal-doxorubicin complexes inside liposomes. , 2002, Biochimica et biophysica acta.

[59]  P. Cullis,et al.  Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. , 2001, Biochimica et biophysica acta.

[60]  M. Lynch,et al.  Novel Process for Producing Cubic Liquid Crystalline Nanoparticles (Cubosomes) , 2001 .

[61]  S. D. De Smedt,et al.  Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) into human primary melanocytes. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[62]  M. Costello Cryo-Electron Microscopy of Biological Samples , 2006, Ultrastructural pathology.

[63]  T. Bramer,et al.  Catanionic aggregates formed from drugs and lauric or capric acids enable prolonged release from gels. , 2008, Journal of colloid and interface science.

[64]  L. Jeffs,et al.  A Scalable, Extrusion-Free Method for Efficient Liposomal Encapsulation of Plasmid DNA , 2005, Pharmaceutical Research.

[65]  J. Harris Negative Staining and Cryoelectron Microscopy , 1997, Microscopy Today.

[66]  B. Lindman,et al.  Dispersed lipid liquid crystalline phases stabilized by a hydrophobically modified cellulose. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[67]  K. Edwards,et al.  Encapsulation of doxorubicin into thermosensitive liposomes via complexation with the transition metal manganese. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[68]  Hui Li,et al.  Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment , 2007, International journal of nanomedicine.

[69]  T. Rades,et al.  Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: hexosomes are not necessarily flat hexagonal prisms. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[70]  M. Brandl,et al.  5-Fluorouracil in vesicular phospholipid gels for anticancer treatment: entrapment and release properties. , 2003, International journal of pharmaceutics.

[71]  Y. Talmon,et al.  High elongation of polyelectrolyte chains in the osmotic limit of spherical polyelectrolyte brushes: a study by cryogenic transmission electron microscopy. , 2005, Journal of the American Chemical Society.

[72]  K. Edwards,et al.  Structural effects caused by spray- and freeze-drying of liposomes and bilayer disks. , 2010, Journal of pharmaceutical sciences.

[73]  N. Garti,et al.  Solubilization of hydrophobic guest molecules in the monoolein discontinuous QL cubic mesophase and its soft nanoparticles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[74]  A. Müllertz,et al.  Biorelevant media simulating fed state intestinal fluids: colloid phase characterization and impact on solubilization capacity. , 2010, Journal of pharmaceutical sciences.

[75]  V. Klang,et al.  Enhancement of stability and skin permeation by sucrose stearate and cyclodextrins in progesterone nanoemulsions. , 2010, International journal of pharmaceutics.

[76]  K. Edwards,et al.  Phase behavior and aggregate structure in mixtures of dioleoylphosphatidylethanolamine and poly(ethylene glycol)-lipids. , 2001, Biophysical journal.

[77]  B. Frisch,et al.  Layersome: development and optimization of stable liposomes as drug delivery system. , 2007, International journal of pharmaceutics.

[78]  V. Unger,et al.  Electron cryomicroscopy methods. , 2001, Current opinion in structural biology.

[79]  M. Leser,et al.  Emulsified microemulsions and oil-containing liquid crystalline phases. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[80]  M. Bally,et al.  Improved retention of idarubicin after intravenous injection obtained for cholesterol-free liposomes. , 2002, Biochimica et biophysica acta.

[81]  M. Marko,et al.  Three-dimensional cryotransmission electron microscopy of cells and organelles. , 2007, Methods in molecular biology.

[82]  J. Dubochet,et al.  Cryo-negative staining. , 1998, Micron.

[83]  Abraham J Koster,et al.  Cryo-electron tomography in biology and medicine. , 2009, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[84]  O. Ludkovski,et al.  Stabilized plasmid-lipid particles for systemic gene therapy , 2000, Gene Therapy.

[85]  H. Bunjes,et al.  Supercooled Smectic Nanoparticles: A Potential Novel Carrier System for Poorly Water Soluble Drugs , 2004, Pharmaceutical Research.

[86]  K. Westesen,et al.  Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles , 1997 .

[87]  Rolf Schubert,et al.  Preparation of monodisperse block copolymer vesicles via a thermotropic cylinder-vesicle transition. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[88]  J. Crassous,et al.  Quantitative analysis of polymer colloids by cryo-transmission electron microscopy. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[89]  F. Tiberg,et al.  Self-assembled lipid superstructures: beyond vesicles and liposomes. , 2005, Nano letters.

[90]  C. J. Fecko,et al.  Novel therapeutic nano-particles (lipocores): trapping poorly water soluble compounds. , 2000, International journal of pharmaceutics.

[91]  P. Couvreur,et al.  Nanotechnology: Intelligent Design to Treat Complex Disease , 2006, Pharmaceutical Research.

[92]  B. Battersby,et al.  Lipid-DNA complex formation: reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron microscopy. , 1999, Biophysical journal.

[93]  R. Krauss,et al.  Structural heterogeneity of apoB-containing serum lipoproteins visualized using cryo-electron microscopy. , 1999, Journal of lipid research.

[94]  T. Bramer,et al.  Catanionic mixtures involving a drug: a rather general concept that can be utilized for prolonged drug release from gels. , 2006, Journal of pharmaceutical sciences.

[95]  H. Bunjes,et al.  Influence of composition and preparation parameters on the properties of aqueous monoolein dispersions. , 2007, International journal of pharmaceutics.

[96]  K. Edwards,et al.  Formation of drug-arylsulfonate complexes inside liposomes: a novel approach to improve drug retention. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[97]  J. Byrd,et al.  Transferrin receptor-targeted lipid nanoparticles for delivery of an antisense oligodeoxyribonucleotide against Bcl-2. , 2009, Molecular pharmaceutics.

[98]  Joachim Frank,et al.  Preparation of macromolecular complexes for cryo-electron microscopy , 2007, Nature Protocols.

[99]  G. Gregoriadis,et al.  Liposome-mediated DNA vaccination: the effect of vesicle composition. , 2001, Vaccine.

[100]  Heike Bunjes,et al.  Influence of stabilizer systems on the properties and phase behavior of supercooled smectic nanoparticles. , 2010, Journal of colloid and interface science.

[101]  Judith Kuntsche,et al.  Temoporfin-loaded liposomes: physicochemical characterization. , 2010, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[102]  N. Severs,et al.  Freeze-fracture electron microscopy , 2007, Nature Protocols.

[103]  M. Johnston,et al.  Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. , 2006, Biochimica et biophysica acta.

[104]  Patrick Couvreur,et al.  Discovery of new hexagonal supramolecular nanostructures formed by squalenoylation of an anticancer nucleoside analogue. , 2008, Small.

[105]  P. Schurtenberger,et al.  New controlled environment vitrification system for cryo‐transmission electron microscopy: design and application to surfactant solutions , 2000, Journal of microscopy.

[106]  M. Bally,et al.  Copper-topotecan complexation mediates drug accumulation into liposomes. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[107]  F. Molina,et al.  Lipoplex nanostructures reveal a general self-organization of nucleic acids. , 2009, Biochimica et biophysica acta.

[108]  Y. T. Ko,et al.  Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[109]  Shlomo Magdassi,et al.  Formation of celecoxib nanoparticles from volatile microemulsions. , 2010, International journal of pharmaceutics.

[110]  M. Michel,et al.  Study of liquid crystal space groups using controlled tilting with cryogenic transmission electron microscopy. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[111]  E. Junquera,et al.  A physicochemical characterization of the interaction between DC-Chol/DOPE cationic liposomes and DNA. , 2008, The journal of physical chemistry. B.

[112]  Ulf Olsson,et al.  Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[113]  F. Tiberg,et al.  Cubic phases and cubic phase dispersions in a phospholipid-based system. , 2005, Journal of the American Chemical Society.

[114]  David B. Williams,et al.  Transmission Electron Microscopy: A Textbook for Materials Science , 1996 .

[115]  E. Franses,et al.  Effect of sonication and freezing-thawing on the aggregate size and dynamic surface tension of aqueous DPPC dispersions. , 2007, Journal of colloid and interface science.

[116]  K. Edwards,et al.  Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes. , 1997, Biophysical journal.

[117]  K. Edwards,et al.  Nuclisome: a novel concept for radionuclide therapy using targeting liposomes , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[118]  R. Schubert,et al.  Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. , 2006, Biochimica et biophysica acta.

[119]  M. Adrian,et al.  Crystallography of dispersed liquid crystalline phases studied by cryo‐transmission electron microscopy , 2006, Journal of microscopy.

[120]  Jeffrey A Hubbell,et al.  PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: cyclosporin A as an example. , 2008, Molecular pharmaceutics.

[121]  S. Siegel,et al.  Synthesis and characterization of mPEG-PLA prodrug micelles. , 2005, Biomacromolecules.

[122]  R. Piñol,et al.  Formation of polymer vesicles by liquid crystal amphiphilic block copolymers. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[123]  Y. Talmon,et al.  Physico-chemical characterization of Intralipid emulsions. , 1991, Biochimica et biophysica acta.

[124]  J. C. Gilkey,et al.  Cryo-electron microscopy reveals human low density lipoprotein substructure. , 1994, Journal of lipid research.

[125]  M. Morari,et al.  Solid Lipid Nanoparticles as Delivery Systems for Bromocriptine , 2008, Pharmaceutical Research.

[126]  Bernard Cabane,et al.  Structures of Nanoparticles Prepared from Oil-in-Water Emulsions , 2004, Pharmaceutical Research.

[127]  Y. Barenholz,et al.  Nanostructure of cationic lipid-oligonucleotide complexes. , 2004, Biophysical journal.

[128]  M. Koch,et al.  Effect of Particle Size on Colloidal Solid Triglycerides , 2000 .

[129]  R. Krauss,et al.  Cryo-electron microscopy of low density lipoprotein and reconstituted discoidal high density lipoprotein: imaging of the apolipoprotein moiety. , 1997, Journal of lipid research.

[130]  K. Edwards,et al.  Cryo transmission electron microscopy of liposomes and related structures , 2000 .

[131]  P. Cullis,et al.  Drug Delivery Systems: Entering the Mainstream , 2004, Science.

[132]  K. Edwards,et al.  Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. , 2005, Journal of pharmaceutical sciences.

[133]  J. Heyes,et al.  Lipid encapsulation enables the effective systemic delivery of polyplex plasmid DNA. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[134]  Paolo Mariani,et al.  Cubosome Dispersions as Delivery Systems for Percutaneous Administration of Indomethacin , 2005, Pharmaceutical Research.

[135]  E. Wachtel,et al.  Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[136]  T. Gunnarsson,et al.  "Sponge" nanoparticle dispersions in aqueous mixtures of diglycerol monooleate, glycerol dioleate, and polysorbate 80. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[137]  Judith Kuntsche,et al.  Size determinations of colloidal fat emulsions: a comparative study. , 2009, Journal of biomedical nanotechnology.

[138]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[139]  G. Karlsson,et al.  Complexes between cationic liposomes and DNA visualized by cryo-TEM. , 1995, Biochimica et biophysica acta.

[140]  So young Kim,et al.  Vesicle-to-spherical micelle-to-tubular nanostructure transition of monomethoxy-poly(ethylene glycol)-poly(trimethylene carbonate) diblock copolymer. , 2008, The journal of physical chemistry. B.

[141]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[142]  B. Boyd,et al.  Hexosomes formed from glycerate surfactants--formulation as a colloidal carrier for irinotecan. , 2006, International journal of pharmaceutics.

[143]  J. Crassous,et al.  Imaging the volume transition in thermosensitive core-shell particles by cryo-transmission electron microscopy. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[144]  M. Giacca,et al.  Nanoparticles from lipid-based liquid crystals: emulsifier influence on morphology and cytotoxicity. , 2010, The journal of physical chemistry. B.

[145]  F. Tiberg,et al.  Physicochemical and drug delivery aspects of lipid-based liquid crystalline nanoparticles: a case study of intravenously administered propofol. , 2006, Journal of Nanoscience and Nanotechnology.

[146]  S M Gruner,et al.  Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient. , 1998, Biochimica et biophysica acta.

[147]  M. Koch,et al.  Observation of Size-Dependent Melting in Lipid Nanoparticles , 1999 .

[148]  P. Cullis,et al.  Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. , 2001, Biophysical journal.