Absorption and reflection infrared spectra of MgO and other diatomic compounds

Oxide and sulphide minerals are expected to occur in diverse astronomical environments. However, optical constants for such minerals are either lacking or poorly characterized. Minimizing errors in laboratory data, while extrapolating over wide frequency ranges, is the focus of this report. We present reflection and absorption spectra of single-crystal MgO from about ∼100 to 18 000 cm −1 (∼100 to 0.5 µm), and derive emissivity, dielectric and optical functions (n and k) using classical dispersion analysis and supplementary data to ensure that the reflectivity values are correct at the low- and high-frequency limits. Absorbance spectra of thin films of oxides (MgO, CaO, FeO and ZnO) and sulphides (MgS, CaS and FeS) are in good agreement with available reflectivity measurements, and provide information on the various effects of chemical composition, structure and optical depth. The greatest mismatch occurs for MgO, connected with this compound having the broadest peak in reflectance. The ferrous compounds (FeO and FeS) have relatively weak infrared features and may be difficult to detect in astronomical environments. Previous optical data based on transmission spectra of dispersions have underestimated the strength of the main infrared features because this approach includes spectral artefacts that arise from the presence of opaque particulates, or from non-uniform optical depth. We show that areal coverage, not grain size, is the key factor in altering absorption spectra from the intrinsic values, and discuss how to account for ‘light leakage’ in interpreting astronomical data. Previous reflectivity data on polycrystals differ from intrinsic values because of the presence of additional, internal reflections, creating errors in the derived optical functions. We use classical dispersion analysis and supplemental data from optical microscopy to provide correct n- and k-values for FeO from the far-infrared to the visible, which can then be used in radiative transfer models. Thin-film absorption data are also affected by internal reflections in the transparent regions: we show how to recognize these features and how to obtain the absorption coefficient, n, and k from thin-film infrared data on CaO, CaS and MgS using the damped harmonic oscillator model.

[1]  A. Hofmeister Infrared reflectance spectra of fayalite, and absorption datafrom assorted olivines, including pressure and isotope effects , 1997 .

[2]  Denis L. Rousseau,et al.  First-Order Raman Effect in Wurtzite-Type Crystals , 1969 .

[3]  R. D. Shannon,et al.  Dielectric constants of BeO, MgO, and CaO using the two-terminal method , 1989 .

[4]  A. Duba,et al.  Optical absorption and radiative heat transport in olivine at high temperature , 1979 .

[5]  Robert E. Criss,et al.  Principles of Stable Isotope Distribution , 1999 .

[6]  R. Geick Measurement and analysis of the fundamental lattice vibration spectrum of PbS , 1964 .

[7]  R. J. Bell,et al.  Optical properties of calcite and gypsum in crystalline and powdered form in the infrared and far-infrared , 1993 .

[8]  J. Fontanella,et al.  Low‐frequency dielectric constants of α‐quartz, sapphire, MgF2, and MgO , 1974 .

[9]  B. Fegley,et al.  The Rate of Iron Sulfide Formation in the Solar Nebula , 1996 .

[10]  A. Tielens,et al.  The discovery of the "21" mu m and "30" mu m emission features in Planetary Nebulae with Wolf-Rayet central stars , 2001, astro-ph/0109146.

[11]  Eugene Loh,et al.  OPTICAL PHONONS IN BeO CRYSTALS. , 1968 .

[12]  N. Manson,et al.  Second-Order Raman Spectrum of MgO , 1971 .

[13]  E. Nixon,et al.  Infrared dielectric response and lattice vibrations of calcium and strontium oxides , 1968 .

[14]  Thomas J. Ahrens,et al.  Mineral physics & crystallography : a handbook of physical constants , 1995 .

[15]  A. Hofmeister,et al.  Thermal conductivity of spinels and olivines from vibrational spectroscopy: Ambient conditions , 2001 .

[16]  R. G. Arnold Range in composition and structure of 82 natural terrestrial pyrrhotites , 1967 .

[17]  P. Gielisse,et al.  Infrared Properties of NiO and CoO and Their Mixed Crystals , 1965 .

[18]  K. W. Blazey Optical absorption of MgO: Fe , 1977 .

[19]  S. Batsanov,et al.  Effect of valency and coordination of atoms on position and form of infrared absorption bands in inorganic compounds , 1969 .

[20]  G. Peckham,et al.  Lattice dynamics of magnesium oxide , 1970 .

[21]  M. Barlow,et al.  The SiC Problem: Astronomical and Meteoritic Evidence , 1999, astro-ph/9901119.

[22]  D. A. Howard,et al.  A thermal emission spectral library of rock-forming minerals , 2000 .

[23]  K. Stulík,et al.  Interpretation and processing of vibrational spectra , 1978 .

[24]  N. L. Bowen,et al.  The system MgO-FeO-SiO 2 , 1935 .

[25]  I. Boswarva Semiempirical Calculations of Ionic Polarizabilities and van der Waals Potential Coefficients for the Alkaline-Earth Chalcogenides , 1970 .

[26]  D. Brownlee,et al.  Identification of iron sulphide grains in protoplanetary disks , 2002, Nature.

[27]  A. Hofmeister,et al.  Vibrational spectra of dense, hydrous magnesium silicates at high pressure: Importance of the hydrogen bond angle , 1999 .

[28]  R. L. Johnston,et al.  Temperature and pressure variation of the refractive index of diamond. , 1977, Applied optics.

[29]  D. W. Berreman,et al.  Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films , 1963 .

[30]  S. Nudelman,et al.  Optical properties of solids , 1969 .

[31]  E. Duesler,et al.  Improved Infrared Optical-Index Values for MgO , 1970 .

[32]  M. Galtier,et al.  Phonons Optiques de CaO, SrO, BaO Au Centre de la Zone de Brillouin à 300 et 17K , 1972 .

[33]  Raymond Jeanloz,et al.  Wüstite (Fe1‐x O): A review of its defect structure and physical properties , 1984 .

[34]  W. J. Choyke,et al.  EXCITON RECOMBINATION RADIATION AND PHONON SPECTRUM OF 6H SiC , 1962 .

[35]  Astronomy,et al.  Temperature effects on the 15–85 μm spectra of olivines and pyroxenes , 2001, astro-ph/0103297.

[36]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[37]  A. Hofmeister,et al.  Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar , 1991 .

[38]  M. Brewster Thermal Radiative Transfer and Properties , 1992 .

[39]  F. Cotton Chemical Applications of Group Theory , 1971 .

[40]  G. Peckham,et al.  Focusing conditions for a triple-axis neutron spectrometer , 1967 .

[41]  Howard J. Humecki,et al.  Practical Guide to Infrared Microspectroscopy , 1995 .

[42]  H. T. Evans Lunar Troilite: Crystallography , 1970, Science.

[43]  M. Fox Optical Properties of Solids , 2010 .

[44]  A. Hofmeister,et al.  Evaluation of shear moduli and other properties of silicates with the spinel structure from IR spectroscopy , 2001 .

[45]  J. Craig,et al.  Mineral chemistry of metal sulfides , 1978 .

[46]  L. Brantley,et al.  Reliability of classical dispersion analysis of LiF and MgO reflectance data , 1971 .

[47]  W. Haase William G. Fateley, Francis R. Dollish, Neil T. McDevitt und Freeman F. Bentley: Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method, Wiley‐Interscience, New York 1972. 222 Seiten. Preis: £ 5.45. , 1974 .

[48]  S. S. Mitra Infrared and Raman Spectra Due to Lattice Vibrations , 1969 .

[49]  A. Hofmeister,et al.  Single-crystal absorption and reflection infrared spectroscopy of birefringent grossular-andradite garnets , 1993 .

[50]  M. Kessler,et al.  ISO beyond the peaks: The 2nd ISO workshop on analytical spectroscopy , 2000 .

[51]  G. Andermann,et al.  Kramers-Kronig Dispersion Analysis of Infrared Reflectance Bands , 1965 .

[52]  R. C. Miller,et al.  Far Infrared Dielectric Dispersion in BaTiO3, SrTiO3, and TiO2 , 1962 .

[53]  T. Henning,et al.  Magnesium-iron oxides—astrophysical origin and optical constants , 1995 .

[54]  S. H. Moseley,et al.  Laboratory infrared spectra of predicted condensates in carbon-rich stars , 1985 .

[55]  D. Adler,et al.  Electrical and optical properties of FeO , 1975 .

[56]  S. S. Mitra,et al.  Temperature Dependence of Infrared Dispersion in Ionic Crystals LiF and MgO , 1966 .

[57]  W. G. Fateley Infrared and Raman selection rules for molecular and lattice vibrations : the correlation method , 1972 .

[58]  N. F. M. Henry,et al.  The colours of opaque minerals , 1992 .