A correlation-based model prior for stereo

All non-trivial stereo problems need model priors to deal with ambiguities and noise perturbations. To meet requirements of increasingly demanding tasks such as modeling for rendering, a proper model prior should impose preference on the true scene structure, while avoiding artificial bias such as fronto-parallel. We introduce a geometric model prior based on a novel technique we call kernel correlation. Maximizing kernel correlation is shown to be equal to distance minimization in the M-estimator sense. As a model prior, kernel correlation is demonstrated to have good properties that can result in renderable, very smooth and accurate depth map. The results are evaluated both qualitatively by view synthesis and quantitatively by error analysis.

[1]  T. Kanade,et al.  Kernel correlation as an affinity measure in point-sampled vision problems , 2003 .

[2]  Carlo Tomasi,et al.  A Pixel Dissimilarity Measure That Is Insensitive to Image Sampling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Hai Tao,et al.  A global matching framework for stereo computation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[4]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[5]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  A. Rényi On Measures of Entropy and Information , 1961 .

[7]  Richard Szeliski,et al.  Hierarchical spline-based image registration , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Carlo Tomasi,et al.  Multiway cut for stereo and motion with slanted surfaces , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[10]  Pascal Fua,et al.  Reconstructing complex surfaces from multiple stereo views , 1995, Proceedings of IEEE International Conference on Computer Vision.

[11]  R. Cipolla,et al.  A probabilistic framework for space carving , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[12]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[14]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[15]  Richard Szeliski,et al.  Layered depth images , 1998, SIGGRAPH.

[16]  Richard Szeliski,et al.  Symmetric Sub-Pixel Stereo Matching , 2002, ECCV.

[17]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Darius Burschka,et al.  Advances in Computational Stereo , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Richard Szeliski,et al.  Motion Estimation with Quadtree Splines , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Yuichi Ohta,et al.  Occlusion detectable stereo-occlusion patterns in camera matrix , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[22]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[23]  Jitendra Malik,et al.  Reconstructing Polyhedral Models of Architectural Scenes from Photographs , 1996, ECCV.

[24]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[26]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[28]  Carlo Tomasi,et al.  Surfaces with occlusions from layered stereo , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.