A Bibliometric Analysis of Research on Supported Ionic Liquid Membranes during the 1995–2015 Period: Study of the Main Applications and Trending Topics

A bibliometric analysis based on Scopus database was performed to identify the global research trends related to Supported Ionic Liquid Membranes (SILMs) during the time period from 1995 to 2015. This work tries to improve the understanding of the most relevant research topics and applications. The results from the analysis reveal that only after 2005 the research efforts focused on SILMs became significant, since the references found before that year are scarce. The most important research works on the four main application groups for SILMs defined in this work (carbon dioxide separation, other gas phase separations, pervaporation and liquid phase separations) were summarized in this paper. Carbon dioxide separation appeared as the application that has received by far the most attention according to the research trends during the analysed period. Comments about other significant applications that are gaining attention, such as the employment of SILMs in analytical tasks or their consideration for the production of fuel cells, have been included.

[1]  P. Fulvio,et al.  “Brick-and-mortar” synthesis of free-standing mesoporous carbon nanocomposite membranes as supports of room temperature ionic liquids for CO2−N2 separation , 2014 .

[2]  Zhiyong Guo,et al.  Hollow fiber supported ionic liquid membrane microextraction for preconcentration of kanamycin sulfate with electrochemiluminescence detection , 2014 .

[3]  M. Hashim,et al.  Performance evaluation of supported ionic liquid membrane for removal of phenol. , 2011, Journal of hazardous materials.

[4]  C. Poole,et al.  Extraction of organic compounds with room temperature ionic liquids. , 2010, Journal of chromatography. A.

[5]  T. Melin,et al.  Novel supported ionic liquid membranes for simultaneous homogeneously catalyzed reaction and vapor separation , 2007 .

[6]  Jung Min Lee,et al.  Preparation of supported ionic liquid membranes (SILMs) for the removal of acidic gases from crude natural gas , 2009 .

[7]  G. Romanos,et al.  Nanoporous ceramic supported ionic liquid membranes for CO2 and SO2 removal from flue gas , 2017 .

[8]  K. Mohanty,et al.  Selective separation of Bisphenol A from aqueous solution using supported ionic liquid membrane , 2013 .

[9]  M. Matsumoto,et al.  Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids , 2005 .

[10]  A. Ismail,et al.  Ionic liquid-impregnated agarose film two-phase micro-electrodriven membrane extraction (IL-AF-μ-EME) for the analysis of antidepressants in water samples. , 2017, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[11]  M. Matsumoto,et al.  Application of supported ionic liquid membranes using a flat sheet and hollow fibers to lactic acid recovery , 2010 .

[12]  Fernando R. Mazarrón,et al.  Analysis of research activity in the field “Engineering, Civil” through bibliometric methods , 2013 .

[13]  F. Hernández‐Fernández,et al.  Kinetic resolution of 1-phenylethanol integrated with separation of substrates and products by a supported ionic liquid membrane , 2009 .

[14]  S. Zyoud,et al.  Bibliometric analysis of scientific publications on waterpipe (narghile, shisha, hookah) tobacco smoking during the period 2003-2012 , 2014, Tobacco induced diseases.

[15]  K. Mohanty,et al.  Performance of different ionic liquids to remove phenol from aqueous solutions using supported liquid membrane , 2015 .

[16]  P. Izák,et al.  Progress in separation of gases by permeation and liquids by pervaporation using ionic liquids: A review , 2014 .

[17]  Qiang Wang,et al.  A bibliometric analysis of research on the risk of engineering nanomaterials during 1999-2012. , 2014, The Science of the total environment.

[18]  Y. Kang,et al.  Metallic copper incorporated ionic liquids toward maximizing CO2 separation properties , 2013 .

[19]  João G. Crespo,et al.  Electrical impedance spectroscopy characterisation of supported ionic liquid membranes , 2006 .

[20]  M. Miró,et al.  Dynamic single-interface hollow fiber liquid phase microextraction of Cr(VI) using ionic liquid containing supported liquid membrane. , 2016, Talanta.

[21]  D. Langevin,et al.  Polyimide/ionic liquid composite membranes for fuel cells operating at high temperatures , 2014 .

[22]  G. Romanos,et al.  Development and characterization of chemically stabilized ionic liquid membranes-Part I: Nanoporous ceramic supports , 2010 .

[23]  A. Ito,et al.  CO2 Separation from Air by Nanoparticle-Supported Liquid Membranes of Amine and Ionic Liquid Mixtures , 2016 .

[24]  Y. Kang,et al.  Surface tuned copper nanoparticles by 1-methyl-3-octylimidazolium tetrafluoroborate and its applications to facilitated CO2 transport , 2014 .

[25]  Ram Devanathan,et al.  Recent developments in proton exchange membranes for fuel cells , 2008 .

[26]  K. Dahmouche,et al.  Structure and Properties of New sPEEK/Zirconia/Protic Ionic Liquid Membranes for Fuel Cell Application , 2017 .

[27]  M. Valcárcel,et al.  Ionic liquid-based dynamic liquid-phase microextraction: application to the determination of anti-inflammatory drugs in urine samples. , 2008, Journal of chromatography. A.

[28]  T. Sugawara,et al.  Perfluorocarbon-based supported liquid membranes for O2/N2 separation , 2013 .

[29]  I. Vorotyntsev,et al.  Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2 , 2016, Membranes.

[30]  J. Crespo,et al.  Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids. , 2002, Angewandte Chemie.

[31]  Jian Li,et al.  Hollow fiber supported ionic liquid membrane microextraction for speciation of mercury by high-performance liquid chromatography-inductively coupled plasma mass spectrometry , 2015 .

[32]  D. Vollath Nanoparticles - Nanocomposites – Nanomaterials: An Introduction for Beginners , 2013 .

[33]  João G. Crespo,et al.  Stability of supported ionic liquid membranes as studied by X-ray photoelectron spectroscopy , 2005 .

[34]  C. Godínez,et al.  New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment , 2015 .

[35]  Xiangping Zhang,et al.  Recent development of ionic liquid membranes , 2016 .

[36]  S. Sanchez-Segado,et al.  On the selective separation of metal ions from hydrochloride aqueous solution by pertraction through supported ionic liquid membranes , 2013 .

[37]  Liping Wang,et al.  Membrane-based, enzyme-facilitated, efficient carbon dioxide capture , 2009 .

[38]  L. Neves,et al.  Separation of biohydrogen by supported ionic liquid membranes , 2009 .

[39]  A. E. Al-Rawajfeh,et al.  A bibliometric-based evaluation on environmental research in the Arab world , 2017, International Journal of Environmental Science and Technology.

[40]  I. Ortiz,et al.  Facilitated-transport supported ionic liquid membranes for the simultaneous recovery of hydrogen and carbon monoxide from nitrogen-enriched gas mixtures , 2014 .

[41]  Xiangping Zhang,et al.  Combination of ionic liquids with membrane technology: a new approach for CO2 separation , 2016 .

[42]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[43]  Weidong Zhang,et al.  Selective Separation of Toluene/n‐Heptane by Supported Ionic Liquid Membranes with [Bmim][BF4] , 2015 .

[44]  B. Saramago,et al.  On the interfacial behavior of ionic liquids: surface tensions and contact angles. , 2009, Journal of colloid and interface science.

[45]  M. Hashim,et al.  Ionic liquids in supported liquid membrane technology , 2011 .

[46]  Q. Gan,et al.  A Study on Permeabilities and Selectivities of Small-Molecule Gases for Composite Ionic Liquid and Polymer Membranes , 2013 .

[47]  K. Mohanty,et al.  1-Butyl-2,3-dimethylimidazolium hexafluorophosphate as a green solvent for the extraction of endosulfan from aqueous solution using supported liquid membrane , 2014 .

[48]  Thanh Wang,et al.  Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography. , 2009, Journal of chromatography. A.

[49]  Jun-Jie Hew,et al.  Hall of fame for mobile commerce and its applications: A bibliometric evaluation of a decade and a half (2000-2015) , 2017, Telematics Informatics.

[50]  A. Bandyopadhyay,et al.  Bibliometric analysis of carbon dioxide reduction research trends during 1999–2009 , 2012 .

[51]  F. J. Alguacil,et al.  Non-dispersive extraction of gold(III) with ionic liquid Cyphos IL101 , 2017 .

[52]  M. Matsumoto,et al.  Permeation of Succinic Acid through Supported Ionic Liquid Membranes , 2013 .

[53]  L. Mingjun,et al.  Preparation, characterization of P(VDF-HFP)/[bmim]BF4 ionic liquids hybrid membranes and their pervaporation performance for ethyl acetate recovery from water , 2012 .

[54]  S. H. Tan,et al.  Pervaporation separation of a ternary azeotrope containing ethyl acetate, ethanol and water using a buckypaper supported ionic liquid membrane , 2016 .

[55]  M. Goto,et al.  Selective recovery of dysprosium and neodymium ions by a supported liquid membrane based on ionic liquids , 2011 .

[56]  Thijs J. H. Vlugt,et al.  State-of-the-Art of CO2 Capture with Ionic Liquids , 2012 .

[57]  C. Godínez,et al.  New application of polymer inclusion membrane based on ionic liquids as proton exchange membrane in microbial fuel cell , 2016 .

[58]  David Suleiman,et al.  Imidazolium ionic liquid incorporation on sulfonated poly(styrene‐isobutylene‐styrene) proton exchange membranes , 2017 .

[59]  K. Winzer,et al.  Mathematical modelling of clostridial acetone-butanol-ethanol fermentation , 2017, Applied Microbiology and Biotechnology.

[60]  Y. Ho,et al.  A bibliometric analysis of solid waste research during the period 1993-2008. , 2010, Waste Management.

[61]  Sung Ho Ha,et al.  Selective recovery of acetone-butanol-ethanol from aqueous mixture by pervaporation using immobilized ionic liquid polydimethylsiloxane membrane , 2013, Korean Journal of Chemical Engineering.

[62]  P. Izák,et al.  Solute transport from aqueous mixture throught supported ionic liquid membrane by pervaporation , 2006 .

[63]  Hian Kee Lee,et al.  Ultra-hydrophobic ionic liquid 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate supported hollow-fiber membrane liquid-liquid-liquid microextraction of chlorophenols. , 2015, Talanta.

[64]  Marcos Fallanza,et al.  Experimental study of the separation of propane/propylene mixtures by supported ionic liquid membranes containing Ag+–RTILs as carrier , 2012 .

[65]  A. Garea,et al.  A bibliometric analysis of research on arsenic in drinking water during the 1992–2012 period: An outlook to treatment alternatives for arsenic removal , 2015 .

[66]  R. Balasubramanian,et al.  Ionic liquid supported three-phase liquid-liquid-liquid microextraction as a sample preparation technique for aliphatic and aromatic hydrocarbons prior to gas chromatography-mass spectrometry. , 2008, Journal of chromatography. A.

[67]  L. Neves,et al.  Removal of thiols from model jet-fuel streams assisted by ionic liquid membrane extraction , 2014 .

[68]  Z. Durmusoglu,et al.  An analysis of trends in publications on ‘tobacco control’: , 2017 .

[69]  I. Ortiz,et al.  Copper(I)-containing supported ionic liquid membranes for carbon monoxide/nitrogen separation , 2013 .

[70]  Wei Zhao,et al.  Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation , 2012 .

[71]  D. Hopkinson,et al.  Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes , 2016, Membranes.

[72]  L. Neves,et al.  Integrated CO2 capture and enzymatic bioconversion in supported ionic liquid membranes , 2012 .

[73]  J. Crespo,et al.  Studies on the selective transport of organic compounds by using ionic liquids as novel supported liquid membranes. , 2002, Chemistry.

[74]  Johan A Wallin,et al.  Bibliometric methods: pitfalls and possibilities. , 2005, Basic & clinical pharmacology & toxicology.

[75]  S. Xi,et al.  Study on trends and performance of landfill research from 1999 to 2013 by using bibliometric analysis , 2015 .

[76]  S. H. Tan,et al.  Synthesis of the novel symmetric buckypaper supported ionic liquid membrane for the dehydration of ethylene glycol by pervaporation , 2015 .

[77]  M. Matsumoto,et al.  Permeation of Saccharides through Supported Ionic Liquid Membranes Containing Calixarenes as Carriers , 2013 .

[78]  Alper Uzun,et al.  Interactions of [BMIM][BF4] with Metal Oxides and Their Consequences on Stability Limits , 2016 .

[79]  Weidong Zhang,et al.  Extraction separation of toluene/cyclohexane with hollow fiber supported ionic liquid membrane , 2014, Korean Journal of Chemical Engineering.

[80]  Zheng Zhou,et al.  SO2 gas separation using supported ionic liquid membranes. , 2007, The journal of physical chemistry. B.

[81]  C. Cruz,et al.  Bibliometric Analysis of PPP and PFI Literature: Overview of 25 Years of Research , 2016 .

[82]  E. Hamad,et al.  Supported ionic liquid membrane and liquid–liquid extraction using membrane for removal of sulfur compounds from diesel/crude oil , 2013 .

[83]  Inmaculada Ortiz,et al.  Progress in the use of ionic liquids as electrolyte membranes in fuel cells , 2014 .

[84]  Thomas Ward,et al.  A Review of Biomimetic Air Vehicle Research: 1984-2014 , 2015 .

[85]  F. Hernández‐Fernández,et al.  Tailoring supported ionic liquid membranes for the selective separation of transesterification reaction compounds , 2009 .

[86]  M. Hashim,et al.  Performance evaluation of vanadium (IV) transport through supported ionic liquid membrane , 2013 .

[87]  Abhishek Panigrahi,et al.  Effect of Ammonium- and Phosphonium-Based Ionic Liquids on the Separation of Lactic Acid by Supported Ionic Liquid Membranes (SILMs) , 2011, Membranes.

[88]  V. M. Ortiz-Martínez,et al.  Ionic liquid technology to recover volatile organic compounds (VOCs). , 2017, Journal of hazardous materials.

[89]  F. Larachi,et al.  Ionic liquids for CO2 capture—Development and progress , 2010 .

[90]  Jianlong Li,et al.  Sulfonate poly(ether ether ketone) incorporated with ammonium ionic liquids for proton exchange membrane fuel cell , 2017, Ionics.

[91]  Michael Schulte,et al.  Recovery of n-butanol using ionic liquid-based pervaporation membranes , 2012 .

[92]  F. Hernández‐Fernández,et al.  On the importance of the nature of the ionic liquids in the selective simultaneous separation of the substrates and products of a transesterification reaction through supported ionic liquid membranes , 2008 .

[93]  Jiajia Huang,et al.  Intercalating ionic liquid in graphene oxide to create efficient and stable anhydrous proton transfer highways for polymer electrolyte membrane , 2017 .

[94]  A. Górak,et al.  Application of supported ionic liquid membranes (SILMs) for biobutanol pervaporation , 2015 .

[95]  Karel Bouzek,et al.  Polymer-supported 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium trifluoromethanesulfonate as electrolytes for the high temperature PEM-type fuel cell , 2013 .

[96]  K. Friessc,et al.  Separation properties of supported ionic liquid polydimethylsiloxane membrane in pervaporation process , 2009 .

[97]  P. Parhi Supported Liquid Membrane Principle and Its Practices: A Short Review , 2013 .

[98]  M. Matsumoto,et al.  Effect of Carriers on the Transport of Saccharides by Supported Ionic Liquid Membranes , 2010 .

[99]  S J Judd,et al.  Membrane technology costs and me. , 2017, Water research.

[100]  S. Choudhari,et al.  1-Butanol pervaporation performance and intrinsic stability of phosphonium and ammonium ionic liquid-based supported liquid membranes , 2013 .

[101]  Jingtian Hu,et al.  Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. , 2003, Analytical chemistry.

[102]  N. Likhanova,et al.  Supported ionic liquid membranes for separations of gases and liquids: an overview , 2014, Petroleum Chemistry.

[103]  Wang Jie,et al.  A bibliometric study of the trend in articles related to eutrophication published in Science Citation Index , 2011, Scientometrics.

[104]  Jiang Yu,et al.  RECOVERY OF ACETIC ACID OVER WATER BY PERVAPORATION WITH A COMBINATION OF HYDROPHOBIC IONIC LIQUIDS , 2006 .

[105]  Eduardo Rodríguez de San Miguel,et al.  Cr(VI) transport via a supported ionic liquid membrane containing CYPHOS IL101 as carrier: system analysis and optimization through experimental design strategies. , 2014, Journal of hazardous materials.

[106]  Y. Kang,et al.  1-Butyl-3-methylimidazolium tetrafluoroborate/zinc oxide composite membrane for high CO2 separation performance , 2017 .

[107]  Patricia Luis,et al.  Facilitated transport of CO2 and SO2 through Supported Ionic Liquid Membranes (SILMs) , 2009 .

[108]  L. J. Lozano,et al.  Recent advances in supported ionic liquid membrane technology , 2011 .

[109]  Samah W. Al-Jabi,et al.  Drinking and recreational water-related diseases: a bibliometric analysis (1980–2015) , 2016, Annals of Occupational and Environmental Medicine.

[110]  Abiodun D Aderibigbe,et al.  Seeking evidence of multidisciplinarity in environmental geochemistry and health: an analysis of arsenic in drinking water research , 2017, Environmental Geochemistry and Health.

[111]  Joan F. Brennecke,et al.  High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes ! , 2008 .

[112]  C. Supuran,et al.  Supported ionic liquid membranes immobilized with carbonic anhydrases for CO2 transport at high temperatures , 2017 .

[113]  Gopalakrishnan Kumar,et al.  Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes. , 2017, Chemosphere.

[114]  L. Neves,et al.  Supported ionic liquid membranes for removal of dioxins from high-temperature vapor streams. , 2012, Environmental science & technology.

[115]  B. Gaur,et al.  Influence of hydrophobic block length and ionic liquid on the performance of multiblock poly (arylene ether) proton exchange membrane , 2017 .

[116]  José Sánchez,et al.  Separation of butanol from ABE mixtures by sweep gas pervaporation using a supported gelled ionic liquid membrane: Analysis of transport phenomena and selectivity , 2013 .

[117]  Á. Irabien,et al.  Transport of Lignin and Other Lignocellulosic Components Through Supported Ionic Liquid Membranes , 2017 .

[118]  Jamie R Lead,et al.  Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. , 2008, The Science of the total environment.

[119]  A. P. de los Ríos,et al.  Preparation of supported ionic liquid membranes: Influence of the ionic liquid immobilization method on their operational stability , 2009 .

[120]  S. Kang,et al.  Activated copper nanoparticles by 1-butyl-3-methyl imidazolium nitrate for CO2 separation , 2014 .

[121]  Mercedes Úbeda-García,et al.  The intellectual structure of research in hospitality management: A literature review using bibliometric methods of the journal International Journal of Hospitality Management , 2016 .

[122]  Hian Kee Lee,et al.  Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: a review. , 2008, Analytica chimica acta.

[123]  Türkay Dereli,et al.  An analysis of the papers published in Total Quality Management & Business Excellence from 1995 through 2008 , 2011 .

[124]  Guozhu Mao,et al.  Way forward for alternative energy research: A bibliometric analysis during 1994–2013 , 2015 .

[125]  A. Figoli,et al.  Arsenic Removal by Liquid Membranes , 2015, Membranes.

[126]  A. R. Proto,et al.  Forest and UAV: a bibliometric review , 2016 .

[127]  Kaiqin Xu,et al.  Enzymatically-boosted ionic liquid gas separation membranes using carbonic anhydrase of biomass origin , 2016 .

[128]  Alptekin Durmusoglu,et al.  A pre-assessment of past research on the topic of environmental-friendly electronics , 2016 .

[129]  Yuh-Shan Ho,et al.  A historical review and bibliometric analysis of research on lead in drinking water field from 1991 to 2007. , 2010, The Science of the total environment.

[130]  A. Bensoussan,et al.  High-performance liquid chromatography coupled with tandem mass spectrometry technology in the analysis of Chinese Medicine Formulas: A bibliometric analysis (1997-2015). , 2017, Journal of separation science.

[131]  Qian Yang,et al.  Recent advances in supported liquid membrane technology , 2007 .

[132]  A. M. Lopez,et al.  Imidazolium-Based Poly(ionic liquid)/Ionic Liquid Ion-Gels with High Ionic Conductivity Prepared from a Curable Poly(ionic liquid). , 2016, Macromolecular rapid communications.

[133]  Kyung Ho Row,et al.  Recent Applications of Ionic Liquids in Separation Technology , 2010, Molecules.

[134]  Alper Uzun,et al.  Thermal Stability Limits of Imidazolium Ionic Liquids Immobilized on Metal-Oxides. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[135]  I. Marrucho,et al.  Ionic liquid-based materials: a platform to design engineered CO2 separation membranes. , 2016, Chemical Society reviews.

[136]  L. Neves,et al.  The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes , 2015, Membranes.

[137]  P. Izák,et al.  Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane , 2008, Applied Microbiology and Biotechnology.

[138]  F. Tomás-Alonso,et al.  Improvement in the separation efficiency of transesterification reaction compounds by the use of supported ionic liquid membranes based on the dicyanamide anion. , 2009 .

[139]  Jin Zhang,et al.  Bibliometric analysis of scientific publications in endocrinology and metabolism from China, Japan, and South Korea , 2016, Scientometrics.

[140]  P. Izák,et al.  Membrane separation of gas mixtures under the influence of resonance radiation , 2017 .

[141]  A. Riisagera,et al.  Supported ionic liquids: versatile reaction and separation media , 2006 .

[142]  Simon Judd,et al.  Membrane bioreactors: Two decades of research and implementation , 2011 .

[143]  A. Fortuny,et al.  Transport of Zn(II), Fe(II), Fe(III) across polymer inclusion membranes (PIM) and flat sheet supported liquid membranes (SLM) containing phosphonium ionic liquids as metal ion carriers , 2016 .

[144]  S. Dai,et al.  Characterization of hollow fiber supported Ionic liquid membranes using microfocus X-ray computed tomography , 2015 .

[145]  Jing-fu Liu,et al.  Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. , 2007, Journal of chromatography. A.

[146]  A. Tecante,et al.  Lipase-catalyzed synthesis of hyperbranched poly-l-lactide in an ionic liquid , 2013, Bioprocess and Biosystems Engineering.

[147]  D. Langevin,et al.  Supported ionic liquid membranes for water and volatile organic compounds separation: Sorption and permeation properties , 2014 .

[148]  M. Matsumoto,et al.  Separation of Lactic Acid through Polymer Inclusion Membranes Containing Ionic Liquids , 2012 .

[149]  M. Matsumoto,et al.  Separation of Organic Acids Through Liquid Membranes Containing Ionic Liquids , 2014 .

[150]  M. Chakraborty,et al.  The Separation of Aromatic Hydrocarbons Through a Supported Ionic Liquid Membrane , 2012 .

[151]  M. D. L. C. D. R. Rama,et al.  Bibliometric analysis of publications on wine tourism in the databases Scopus and WoS , 2017 .