Markov Chain Monte Carlo Analysis of Correlated Count Data
暂无分享,去创建一个
[1] Z. Griliches,et al. Econometric Models for Count Data with an Application to the Patents-R&D Relationship , 1984 .
[2] J. Aitchison,et al. The multivariate Poisson-log normal distribution , 1989 .
[3] G. King,et al. A Seemingly Unrelated Poisson Regression Model , 1989 .
[4] N. Rose. Profitability and Product Quality: Economic Determinants of Airline Safety Performance , 1990, Journal of Political Economy.
[5] Rainer Winkelmann,et al. Two aspects of labor mobility: A bivariate Poisson regression approach , 1993 .
[6] Georges Dionne,et al. Debt, moral hazard and airline safety An empirical evidence , 1997 .
[7] R. Blundell,et al. Dynamic Count Data Models of Technological Innovation , 1994 .
[8] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[9] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[10] S. Chib,et al. Posterior Simulation and Bayes Factors in Panel Count Data Models , 1998 .
[11] Siddhartha Chib,et al. Markov Chain Monte Carlo Simulation Methods in Econometrics , 1996, Econometric Theory.
[12] P. Deb,et al. Demand for Medical Care by the Elderly: A Finite Mixture Approach , 1997 .
[13] R. Winkelmann. Econometric Analysis of Count Data , 1997 .
[14] J. Wooldridge. Multiplicative Panel Data Models Without the Strict Exogeneity Assumption , 1997, Econometric Theory.
[15] Murat K. Munkin,et al. Simulated maximum likelihood estimation of multivariate mixed‐Poisson regression models, with application , 1999 .
[16] J. T. Wulu,et al. Regression analysis of count data , 2002 .