Nonlinear perturbation theory extension of the Boltzmann code CLASS

We present a new open-source code that calculates one-loop power auto- and cross-power spectra for matter fields and biased tracers in real and redshift space. These spectra incorporate all ingredients required for a direct application to data: non-linear bias, redshift-space distortions, infra-red resummation, counterterms, and the Alcock-Paczynski effect. Our code is based on the Boltzmann solver CLASS and inherits its advantage: user friendliness, ease of modification, high speed, and simple interface with other software. We present detailed descriptions of the theoretical model, the code structure, approximations, and accuracy tests. A typical end-to-end run for one cosmology takes $\sim 0.3$ seconds, which is sufficient for Markov Chain Monte Carlo parameter extraction. As an example, we apply the code to data from the Baryon Oscillation Spectroscopic Survey (BOSS) and infer cosmological parameters from the shape of the galaxy power spectrum.

[1]  R. B. Barreiro,et al.  Planck 2018 results: V. CMB power spectra and likelihoods , 2020 .

[2]  L. Senatore,et al.  The Hubble tension in light of the Full-Shape analysis of Large-Scale Structure data , 2020, Journal of Cosmology and Astroparticle Physics.

[3]  M. Zaldarriaga,et al.  Combining full-shape and BAO analyses of galaxy power spectra: a 1.6% CMB-independent constraint on H0 , 2020, Journal of Cosmology and Astroparticle Physics.

[4]  Matthew Lewandowski,et al.  Violation of the consistency relations for large-scale structure with dark energy , 2019, Journal of Cosmology and Astroparticle Physics.

[5]  M. Zaldarriaga,et al.  Cosmological parameters and neutrino masses from the final Planck and full-shape BOSS data , 2019, Physical Review D.

[6]  Antony Lewis,et al.  GetDist: a Python package for analysing Monte Carlo samples , 2019, 1910.13970.

[7]  F. Vernizzi,et al.  Consistency relations for large-scale structure in modified gravity and the matter bispectrum , 2019, 1909.07366.

[8]  F. Beutler,et al.  The cosmological analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure , 2019, Journal of Cosmology and Astroparticle Physics.

[9]  M. Zaldarriaga,et al.  Cosmological parameters from the BOSS galaxy power spectrum , 2019, Journal of Cosmology and Astroparticle Physics.

[10]  C. Blake,et al.  Quantifying the accuracy of the Alcock-Paczyński scaling of baryon acoustic oscillation measurements , 2019, Journal of Cosmology and Astroparticle Physics.

[11]  A. Chudaykin,et al.  Measuring neutrino masses with large-scale structure: Euclid forecast with controlled theoretical error , 2019, Journal of Cosmology and Astroparticle Physics.

[12]  Z. Slepian On decoupling the integrals of cosmological perturbation theory , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  C. Blake,et al.  Baryon acoustic oscillation methods for generic curvature: application to the SDSS-III Baryon Oscillation Spectroscopic Survey , 2018, Journal of Cosmology and Astroparticle Physics.

[14]  Matias Zaldarriaga,et al.  Modeling biased tracers at the field level , 2018, Physical Review D.

[15]  Tristan L. Smith,et al.  Early Dark Energy can Resolve the Hubble Tension. , 2018, Physical review letters.

[16]  L. Senatore,et al.  An analytic implementation of the IR-resummation for the BAO peak , 2018, Journal of Cosmology and Astroparticle Physics.

[17]  J. Lesgourgues,et al.  Beyond the traditional line-of-sight approach of cosmological angular statistics , 2018, Journal of Cosmology and Astroparticle Physics.

[18]  J. Lesgourgues,et al.  Bias due to neutrinos must not uncorrect'd go , 2018, Journal of Cosmology and Astroparticle Physics.

[19]  F. Schmidt,et al.  The galaxy power spectrum and bispectrum in redshift space , 2018, Journal of Cosmology and Astroparticle Physics.

[20]  J. Lesgourgues,et al.  MontePython 3: Boosted MCMC sampler and other features , 2018, Physics of the Dark Universe.

[21]  S. Sibiryakov,et al.  Infrared resummation for biased tracers in redshift space , 2018, Journal of Cosmology and Astroparticle Physics.

[22]  F. Schmidt,et al.  Beyond LIMD bias: a measurement of the complete set of third-order halo bias parameters , 2017, Journal of Cosmology and Astroparticle Physics.

[23]  L. Senatore,et al.  On the IR-resummation in the EFTofLSS , 2017, 1710.02178.

[24]  J. Lesgourgues,et al.  Comparison of Einstein-Boltzmann solvers for testing general relativity , 2017, 1709.09135.

[25]  J. Kollmeier,et al.  Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals , 2017, 1708.08130.

[26]  D. Spergel,et al.  The Imprint of Neutrinos on Clustering in Redshift Space , 2017, The Astrophysical Journal.

[27]  M. White,et al.  Modeling CMB lensing cross correlations with CLEFT , 2017, 1706.03173.

[28]  L. Verde,et al.  Biases from neutrino bias: to worry or not to worry? , 2017, Monthly Notices of the Royal Astronomical Society.

[29]  D. Seery,et al.  The matter power spectrum in redshift space using effective field theory , 2017, Journal of Cosmology and Astroparticle Physics.

[30]  F. Schmidt,et al.  Large-Scale Galaxy Bias , 2016, 1611.09787.

[31]  David R. Silva,et al.  The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.

[32]  J. Blazek,et al.  FAST-PT II: an algorithm to calculate convolution integrals of general tensor quantities in cosmological perturbation theory , 2016, 1609.05978.

[33]  M. White,et al.  The Gaussian streaming model and convolution Lagrangian effective field theory , 2016, 1609.02908.

[34]  J. Tinker,et al.  The Effect of Fiber Collisions on the Galaxy Power Spectrum Multipole , 2016, 1609.01714.

[35]  M. Schmittfull,et al.  Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals , 2016, 1609.00349.

[36]  Ashley J. Ross,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Constraining modified gravity , 2016, 1612.00812.

[37]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[38]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Fourier space , 2016, 1607.03149.

[39]  Shaun A. Thomas,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living Reviews in Relativity.

[40]  M. Schmittfull,et al.  Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms , 2016 .

[41]  D. Blas,et al.  Time-sliced perturbation theory II: baryon acoustic oscillations and infrared resummation , 2016, 1605.02149.

[42]  M. Fasiello,et al.  Nonlinear fields in generalized cosmologies , 2016, 1604.04612.

[43]  J. Blazek,et al.  FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory , 2016, 1603.04826.

[44]  M. Loverde Neutrino mass without cosmic variance , 2016, 1602.08108.

[45]  D. Bertolini,et al.  Non-Gaussian covariance of the matter power spectrum in the effective field theory of large scale structure , 2015, 1512.07630.

[46]  F. Prada,et al.  EFT of large scale structures in redshift space , 2015, 1512.06831.

[47]  D. Blas,et al.  Time-sliced perturbation theory for large scale structure I: general formalism , 2015, 1512.05807.

[48]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: mock galaxy catalogues for the BOSS Final Data Release , 2015, 1509.06400.

[49]  U. Seljak,et al.  Perturbation theory, effective field theory, and oscillations in the power spectrum , 2015, 1509.02120.

[50]  M. Zaldarriaga,et al.  Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound , 2015, 1507.02256.

[51]  M. White,et al.  A Lagrangian effective field theory , 2015, 1506.05264.

[52]  C. Carbone,et al.  DEMNUni: the clustering of large-scale structures in the presence of massive neutrinos , 2015, 1505.07148.

[53]  M. Zaldarriaga,et al.  Equivalence Principle and the Baryon Acoustic Peak , 2015, 1504.04366.

[54]  M. White,et al.  Cosmological perturbation theory in 1+1 dimensions , 2015, 1502.07389.

[55]  M. Zaldarriaga,et al.  Biased tracers and time evolution , 2014, 1412.5169.

[56]  A. Perko,et al.  Analytic prediction of baryonic effects from the EFT of large scale structures , 2014, 1412.5049.

[57]  J. Lesgourgues,et al.  Structure formation with massive neutrinos: going beyond linear theory , 2014, 1408.2995.

[58]  W. Percival,et al.  The power spectrum and bispectrum of SDSS DR11 BOSS galaxies II: cosmological interpretation , 2014, 1408.0027.

[59]  Donald P. Schneider,et al.  The power spectrum and bispectrum of SDSS DR11 BOSS galaxies – I. Bias and gravity , 2014, 1407.5668.

[60]  L. Senatore Bias in the effective field theory of large scale structures , 2014, 1406.7843.

[61]  M. Zaldarriaga,et al.  The IR-resummed Effective Field Theory of Large Scale Structures , 2014, 1404.5954.

[62]  M. Zaldarriaga,et al.  Renormalized halo bias , 2014, 1402.5916.

[63]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles , 2013, 1312.4611.

[64]  S. Tassev N-point statistics of large-scale structure in the Zel'dovich approximation , 2013, 1311.6316.

[65]  M. Zaldarriaga,et al.  The Lagrangian-space Effective Field Theory of large scale structures , 2013, 1311.2168.

[66]  S. Borgani,et al.  Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters , 2013, 1311.1514.

[67]  M. Viel,et al.  Cosmology with massive neutrinos II: on the universality of the halo mass function and bias , 2013, 1311.1212.

[68]  Francisco Villaescusa-Navarro,et al.  Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies , 2013, 1311.0866.

[69]  S. Foreman,et al.  The Effective Field Theory of Large Scale Structures at two loops , 2013, 1310.0464.

[70]  D. Blas,et al.  Cosmological perturbation theory at three-loop order , 2013, 1309.3308.

[71]  A. Slosar,et al.  DESI and other Dark Energy experiments in the era of neutrino mass measurements , 2013, 1308.4164.

[72]  D. Spergel,et al.  How does non-linear dynamics affect the baryon acoustic oscillation? , 2013, 1306.6660.

[73]  R. Smith,et al.  Halo stochasticity from exclusion and nonlinear clustering , 2013, 1305.2917.

[74]  Antony Lewis,et al.  Efficient sampling of fast and slow cosmological parameters , 2013, 1304.4473.

[75]  A. Riotto,et al.  Symmetries and consistency relations in the large scale structure of the universe , 2013, 1302.0130.

[76]  M. Peloso,et al.  Galilean invariance and the consistency relation for the nonlinear squeezed bispectrum of large scale structure , 2013, 1302.0223.

[77]  K. Benabed,et al.  Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code , 2012, 1210.7183.

[78]  B. Reid,et al.  Convolution Lagrangian perturbation theory for biased tracers , 2012, 1209.0780.

[79]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[80]  L. Senatore,et al.  The effective field theory of cosmological large scale structures , 2012, 1206.2926.

[81]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[82]  M. Zaldarriaga,et al.  Cosmological non-linearities as an effective fluid , 2010, 1004.2488.

[83]  J. Lesgourgues,et al.  Cosmological parameters from large scale structure - geometric versus shape information , 2010, 1003.3999.

[84]  Martin White,et al.  Critical look at cosmological perturbation theory techniques , 2009, 0905.0479.

[85]  Patrick McDonald,et al.  Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS , 2009, 0902.0991.

[86]  M. Pietroni,et al.  Flowing with time: a new approach to non-linear cosmological perturbations , 2008, 0806.0971.

[87]  G. Gallavotti Perturbation Theory , 2007 .

[88]  T. Matsubara,et al.  Resumming Cosmological Perturbations via the Lagrangian Picture: One-loop Results in Real Space and in Redshift Space , 2007, 0711.2521.

[89]  M. Crocce,et al.  Nonlinear evolution of baryon acoustic oscillations , 2007, 0704.2783.

[90]  R. Nichol,et al.  The shape of the SDSS DR5 galaxy power spectrum , 2006, astro-ph/0608636.

[91]  O. Lahav,et al.  Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts , 2006, astro-ph/0605303.

[92]  D. Eisenstein,et al.  On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.

[93]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[94]  M. Crocce,et al.  Renormalized cosmological perturbation theory , 2005, astro-ph/0509418.

[95]  M. Crocce,et al.  Memory of initial conditions in gravitational clustering , 2005, astro-ph/0509419.

[96]  J. Lesgourgues,et al.  Massive neutrinos and cosmology , 2005, astro-ph/0603494.

[97]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[98]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[99]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[100]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[101]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[102]  A. Hamilton Uncorrelated modes of the non-linear power spectrum , 1999, astro-ph/9905191.

[103]  A. Szalay,et al.  Measuring the Galaxy Power Spectrum with Future Redshift Surveys , 1997, astro-ph/9708020.

[104]  Max Tegmark Measuring Cosmological Parameters with Galaxy Surveys , 1997, astro-ph/9706198.

[105]  J. Frieman,et al.  Nonlinear Evolution of the Bispectrum of Cosmological Perturbations , 1997, astro-ph/9704075.

[106]  A. Heavens,et al.  Measuring the cosmological constant with redshift surveys , 1996, astro-ph/9605017.

[107]  T. Matsubara,et al.  Cosmological Redshift Distortion of Correlation Functions as a Probe of the Density Parameter and the Cosmological Constant , 1996, astro-ph/9604142.

[108]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[109]  J. Frieman,et al.  Loop Corrections in Nonlinear Cosmological Perturbation Theory. II. Two-Point Statistics and Self-Similarity , 1996, astro-ph/9602070.

[110]  J. Frieman,et al.  Loop corrections in nonlinear cosmological perturbation theory , 1995, astro-ph/9509047.

[111]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[112]  B. Paczyński,et al.  An evolution free test for non-zero cosmological constant , 1979, Nature.

[113]  J. Huchra,et al.  The local mean mass density of the universe - New methods for studying galaxy clustering , 1978 .

[114]  J. C. Jackson A Critique of Rees's Theory of Primordial Gravitational Radiation , 1972 .

[115]  Y. Zel’dovich Gravitational instability: An Approximate theory for large density perturbations , 1969 .