Poly(3,4-ethylene-dioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate.

A novel biosensor using poly(3,4-ethylene dioxythiophene) (PEDOT) modified Pt electrode was developed for selective determination of dopamine (DA) in presence of high concentrations of ascorbic acid (AA) and uric acid (UA) with a maximum molar ratio of 1/1000, and 1/100 in the presence of sodium dodecyl sulfate (SDS). SDS forms a monolayer on PEDOT surface with a high density of negatively charged end directed outside the electrode. The electrochemical response of dopamine was improved by SDS due to the enhanced accumulation of protonated dopamine via electrostatic interactions. The common overlapped oxidation peaks of AA, UA and DA can be resolved by using SDS as the DA current signal increases while the corresponding signals for AA and UA are quenched. The use of SDS in the electrochemical determination of dopamine using linear sweep voltammetry at modified electrode PEDOT/Pt resulted in detecting dopamine at relatively lower concentrations. The DA concentration could be measured in the linear range of 0.5 to 25μmol L(-1) and 30μmol L(-1) to 0.1mmol L(-1) with correlation coefficients of 0.998 and 0.993 and detection limits 61nmol L(-1) and 86nmol L(-1), respectively. The validity of using this method in the determination of dopamine in human urine was also demonstrated.

[1]  Shen-ming Chen,et al.  Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. , 2009, Biosensors & bioelectronics.

[2]  J. Rusling,et al.  Determination of standard potentials and electron-transfer rates for halobiphenyls from electrocatalytic data. , 1985, Analytical chemistry.

[3]  D. Mandler,et al.  Self-assembled monolayers in electroanalytical chemistry: application of .omega.-mercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid , 1993 .

[4]  J. Benavente,et al.  A study of temperature effect on chemical, structural and transport parameters determined for two different regenerated cellulose membranes , 2003 .

[5]  A. Salimi,et al.  Simultaneous determination of ascorbic acid, uric acid and neurotransmitters with a carbon ceramic electrode prepared by sol-gel technique. , 2006, Talanta.

[6]  Zhiqiang Gao,et al.  Simultaneous determination of dopamine, uric acid and ascorbic acid at an ultrathin film modified gold electrode , 1998 .

[7]  T. Ohsaka,et al.  Electroanalytical applications of cationic self-assembled monolayers: square-wave voltammetric determination of dopamine and ascorbate. , 2001, Bioelectrochemistry.

[8]  Joseph Wang,et al.  Carbon Nanotube Modified Microelectrode for Enhanced Voltammetric Detection of Dopamine in the Presence of Ascorbate , 2005 .

[9]  S. Shukla,et al.  Electrochemistry of bipyridyl derivatives of cobalt in solutions of anionic and cationic micelles , 1987 .

[10]  D. Arrigan,et al.  Dopamine voltammetry at overoxidised polyindole electrodes , 2004 .

[11]  M. El‐Kady,et al.  Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol , 2009 .

[12]  N. Nasirizadeh,et al.  Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid , 2006 .

[13]  R. Roto,et al.  Electrochemical impedance spectroscopy of electrodes modified with thin films of NiAlCl layered double hydroxides , 2002 .

[14]  Lenys Fernández,et al.  Electrochemical evaluation of ferrocene carboxylic acids confined on surfactant–clay modified glassy carbon electrodes: oxidation of ascorbic acid and uric acid , 2005 .

[15]  Xinhua Lin,et al.  Simultaneous determination of dopamine, ascorbic acid and uric acid at poly (Evans Blue) modified glassy carbon electrode. , 2008, Bioelectrochemistry.

[16]  N. Nasirizadeh,et al.  Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid , 2005 .

[17]  A. Galal,et al.  Effect of surfactants on the voltammetric response and determination of an antihypertensive drug. , 2007, Talanta.

[18]  R. Wightman,et al.  Response of microvoltammetric electrodes to homogeneous catalytic and slow heterogeneous charge-transfer reactions , 1980 .

[19]  J.M. Kim,et al.  Preparation and electrochemical behavior of gramicidin-bipolar lipid monolayer membranes supported on gold electrodes. , 2003, Biochimica et biophysica acta.

[20]  G. Suresh,et al.  Selective determination of dopamine using unmodified, exfoliated graphite electrodes , 2004 .

[21]  F. Tajabadi,et al.  Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. , 2006, Analytical biochemistry.

[22]  H. Abruña,et al.  Electroanalysis with chemically modified electrodes , 1985 .

[23]  T. Khayamian,et al.  A differential pulse voltammetric method for simultaneous determination of ascorbic acid, dopamine, and uric acid using poly (3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid) film modified glassy carbon electrode , 2009 .

[24]  R D O'Neill,et al.  Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo. A review. , 1994, The Analyst.

[25]  G. Muthuraman,et al.  The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid , 2008 .

[26]  S. Serrano,et al.  Simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid using a pyrolytic graphite electrode modified into dopamine solution. , 2008, Analytica chimica acta.

[27]  R. Wightman,et al.  Detection of dopamine dynamics in the brain. , 1988, Analytical chemistry.

[28]  Protiva Rani Roy,et al.  Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N,N-dimethylaniline)-modified electrodes. , 2003, Bioelectrochemistry.

[29]  B. Zeng,et al.  The influence of surfactants on the electron-transfer reaction at self-assembled thiol monolayers modifying a gold electrode , 2000 .

[30]  K. Loh,et al.  Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond electrodes , 2005 .

[31]  H. Mottola,et al.  Determination of uric acid at the microgram level by a kinetic procedure based on a "pseudo-induction" period. , 1974, Analytical chemistry.

[32]  J. Rusling Molecular aspects of electron transfer at electrodes in micellar solutions , 1997 .

[33]  X. Wen,et al.  Micellar effects on the electrochemistry of dopamine and its selective detection in the presence of ascorbic acid. , 1999, Talanta.

[34]  O. Arrigoni,et al.  Ascorbic acid: much more than just an antioxidant. , 2002, Biochimica et biophysica acta.

[35]  J. Reynolds,et al.  Electrochemistry of Poly(3,4‐alkylenedioxythiophene) Derivatives , 2003 .

[36]  K. Vytras,et al.  A study on the determination of chromium as chromate at a carbon paste electrode modified with surfactants. , 2004, Talanta.

[37]  R. Compton,et al.  A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode , 2007, Analytical and bioanalytical chemistry.

[38]  A. Kaifer,et al.  Dimerization of the methylviologen cation radical in anionic micellar and polyelectrolyte solutions , 1988 .

[39]  K. Vytras,et al.  A Study on Stripping Voltammetric Determination of Osmium(IV) at a Carbon Paste Electrode Modified In Situ with Cationic Surfactants , 2006 .

[40]  J. Rusling Controlling electrochemical catalysis with surfactant microstructures , 1991 .

[41]  R. Baldwin,et al.  Preconcentration and determination of ferrocenecarboxaldehyde at a chemically modified platinum electrode , 1980 .

[42]  S. Mazumdar,et al.  Direct electrochemistry of heme proteins: effect of electrode surface modification by neutral surfactants. , 2001, Bioelectrochemistry.

[43]  C. Gervasi,et al.  Sodium ion transport through gramicidin-doped bilayers. Influences of temperature and ionic concentration , 2002 .

[44]  Yang Liu,et al.  Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. , 2008, Biosensors & bioelectronics.

[45]  Shen-ming Chen,et al.  Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. , 2007, Talanta.

[46]  Qionglin Liang,et al.  Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid , 2003 .

[47]  O. Niwa,et al.  Highly selective electrochemical detection of dopamine using interdigitated array electrodes modified with nafion/polyester lonomer layered film , 1994 .

[48]  Dafu Cui,et al.  Voltammetric behavior and determination of estrogens at Nafion-modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide , 2002 .

[49]  Yongxin Li,et al.  Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode , 2006 .

[50]  Jyh-Myng Zen and,et al.  A Selective Voltammetric Method for Uric Acid and Dopamine Detection Using Clay-Modified Electrodes , 1997 .

[51]  W. Heineman,et al.  Laboratory techniques in electroanalytical chemistry , 1984 .