Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films

Silicon nanocrystals were in situ grown in a silicon nitride film by plasma-enhanced chemical vapor deposition. The size and structure of silicon nanocrystals were confirmed by high-resolution transmission electron microscopy. Depending on the size, the photoluminescence of silicon nanocrystals can be tuned from the near infrared (1.38eV) to the ultraviolet (3.02eV). The fitted photoluminescence peak energy as E(eV)=1.16+11.8∕d2 is evidence for the quantum confinement effect in silicon nanocrystals. The results demonstrate that the band gap of silicon nanocrystals embedded in silicon nitride matrix was more effectively controlled for a wide range of luminescent wavelengths.

[1]  J. Linnros,et al.  Light emitting diode structure based on Si nanocrystals formed by implantation into thermal oxide , 1998 .

[2]  M. Molinari,et al.  Effects of the amorphous-crystalline transition on the luminescence of quantum confined silicon nanoclusters , 2004 .

[3]  Y. G. Wang,et al.  High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride , 2003 .

[4]  G. Sung,et al.  Growth and Size Control of Amorphous Silicon Quantum Dots Using SiH4/N2 Plasma , 2002 .

[5]  Zafar Iqbal,et al.  A thermodynamic criterion of the crystalline-to-amorphous transition in silicon , 1982 .

[6]  Lloyd L. Chase,et al.  Changes in the Electronic Properties of Si Nanocrystals as a Function of Particle Size , 1998 .

[7]  Hari Singh Nalwa,et al.  Handbook of nanostructured materials and nanotechnology , 2000 .

[8]  J. Jorné,et al.  Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen , 1999 .

[9]  Friedman,et al.  Dimensions of luminescent oxidized and porous silicon structures. , 1994, Physical review letters.

[10]  T. Seong,et al.  Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. , 2001, Physical review letters.

[11]  Robert Elliman,et al.  Reversible charging effects in SiO2 films containing Si nanocrystals , 1999 .

[12]  Furukawa,et al.  Quantum size effects on the optical band gap of microcrystalline Si:H. , 1988, Physical review. B, Condensed matter.

[13]  Giulia Galli,et al.  Surface chemistry of silicon nanoclusters. , 2002, Physical review letters.

[14]  Steven G. Louie,et al.  Quantum confinement and optical gaps in Si nanocrystals , 1997 .

[15]  D. J. Lockwood Light emission in silicon : from physics to devices , 1998 .

[16]  Christophe Delerue,et al.  Electronic structure and optical properties of silicon crystallites: Application to porous silicon , 1992 .

[17]  Fabio Iacona,et al.  Correlation between luminescence and structural properties of Si nanocrystals , 2000 .

[18]  F. Yonezawa,et al.  Theoretical study of light-emission properties of amorphous silicon quantum dots , 2003 .