Characterization of Metamaterials Using a Strip Line Fixture

A method is introduced to measure the effective constitutive parameters of metamaterials having negative permittivity, negative permeability, or negative permeability and negative permittivity simultaneously. The method is based on the strip line topology, thus offering low cost and low setup complexity in comparison to other methods. The method proposed here is validated by numerically simulating the measurement setup while using different types of metamaterials. To validate the method experimentally, a metamaterial having negative permeability over a band of frequencies is characterized. Good agreement is obtained between the experimental and numerical results.

[1]  N. Engheta,et al.  Sub-Wavelength Resonators: On the use of Metafilms to Overcome the λ/2 size limit , 2008 .

[2]  E. J. Vanzura,et al.  Improved technique for determining complex permittivity with the transmission/reflection method , 1990 .

[3]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[4]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[5]  Linfeng Chen,et al.  Cavity perturbation technique for the measurement of permittivity tensor of uniaxially anisotropic dielectrics , 1999, IEEE Trans. Instrum. Meas..

[6]  K. Sarabandi,et al.  A method for characterizing complex permittivity and permeability of meta-materials , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[7]  J. Pendry,et al.  Low frequency plasmons in thin-wire structures , 1998 .

[8]  Charles F. Bunting,et al.  Measurement and analysis for stripline material parameters using network analyzers , 1991, [1991] Conference Record. IEEE Instrumentation and Measurement Technology Conference.

[9]  R. B. Mack,et al.  The Inverse Problem for Biaxial Materials , 1984 .

[10]  A. Erentok,et al.  Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications , 2005, IEEE Transactions on Antennas and Propagation.

[11]  Leila Yousefi,et al.  Miniaturised antennas using artificial magnetic materials with fractal hilbert inclusions , 2010 .

[12]  L. Jelinek,et al.  Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry , 2007 .

[13]  Lixin Ran,et al.  Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. , 2006, Optics express.

[14]  Raj Mittra,et al.  Directivity Enhancement of Printed Antennas Using a Class of Metamaterial Superstrates , 2006 .

[15]  John L. Prince,et al.  Dielectric constant and loss tangent measurement using a stripline fixture , 1998, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B.

[16]  S‐Parameter broadband measurements of microstrip lines and extraction of the substrate intrinsic properties , 2001 .

[17]  S. Tretyakov,et al.  On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas , 2006, IEEE Transactions on Antennas and Propagation.

[18]  K. Sarabandi,et al.  A substrate for small patch antennas providing tunable miniaturization factors , 2006, IEEE Transactions on Microwave Theory and Techniques.

[19]  Richard W. Ziolkowski,et al.  Low frequency lumped element-based negative index metamaterial , 2007 .

[20]  Omar M Ramahi,et al.  Near-field probes using double and single negative media. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  O.M. Ramahi,et al.  Enhanced-Gain Microstrip Antenna Using Engineered Magnetic Superstrates , 2009, IEEE Antennas and Wireless Propagation Letters.

[22]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[23]  D. Smith,et al.  Characterization of a planar artificial magnetic metamaterial surface. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[25]  K. Seemann,et al.  A new strip line broad-band measurement evaluation for determining the complex permeability of thin ferromagnetic films , 2004 .

[26]  Isotropic metamaterial electromagnetic lens , 2004 .

[27]  Juan Hinojosa Permittivity characterization from open-end microstrip line measurements , 2007 .

[28]  R. Ziolkowski Design, fabrication, and testing of double negative metamaterials , 2003 .

[29]  Francisco Medina,et al.  Role of bianisotropy in negative permeability and left-handed metamaterials , 2002 .

[30]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[31]  Richard W. Ziolkowski,et al.  Application of double negative materials to increase the power radiated by electrically small antennas , 2003 .

[32]  R. Greegor,et al.  Experimental determination and numerical simulation of the properties of negative index of refraction materials. , 2003, Optics express.

[33]  C. P. Neo,et al.  Microwave Electronics: Measurement and Materials Characterization , 2004 .

[34]  Leila Yousefi,et al.  On the Fundamental Limitations of Artificial Magnetic Materials , 2010, IEEE Transactions on Antennas and Propagation.

[35]  Sia Nemat-Nasser,et al.  Fabrication and characterization of a negative-refractive-index composite metamaterial , 2004 .

[36]  O. Ramahi,et al.  BROADBAND EXPERIMENTAL CHARACTERIZATION OF ARTIFICIAL MAGNETIC MATERIALS BASED ON A MICROSTRIP LINE METHOD , 2009 .

[37]  O. Ramahi,et al.  Enhanced Bandwidth Artificial Magnetic Ground Plane for Low-Profile Antennas , 2007, IEEE Antennas and Wireless Propagation Letters.

[38]  Negative material characterization using microstrip line structures , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[39]  P. Gelin,et al.  A microstrip device for the broad band simultaneous measurement of complex permeability and permittivity , 1994 .

[40]  Leila Yousefi,et al.  Artificial Magnetic Materials Using Fractal Hilbert Curves , 2010, IEEE Transactions on Antennas and Propagation.